> DFC[ Ebjbj 46ΐΐB ccD4{j?????&&&$: &"&&& cc??5&@c8??&?@'EafpK0{&&&&&&& &&&{&&&&&&&&&&&&& ): 2017 Winter Final AP Statistics Study Guide Use this to study this is not a graded assignment
but participation points are being lost if you dont work on this during the class time provided
Your final consists of 11 multiple-choice questions and 3 multi-part open-response questions, totaling 100 points. This exam is 20% of your semester grade so could certainly influence things!
Content on the final:
1. Establishing correct null and/or alternate hypotheses
2. Knowing what happens to the mean, median and standard deviation of data when the data is transformed
3. Describing data (SOCS)
4. Computing and Interpreting a Confidence Interval
5. Interpreting Type I and II errors and the probabilities of committing them
6. Using z-scores to solve normal problems for percentages or missing data values when provided a percentage
7. Knowing the percent of data between each part of a box-plot
8. Knowing how the width of a confidence interval changes if sample size or % values change
9. Understanding how skewed data relates to mean and median measures
10. Understanding all of the SIN conditions and when they are necessary
11. Analyzing the five-number summaries, showing the outlier math and accurately sketching parallel box-plots
12. Relating a tests p-value and whether it makes the test significant or not
13. Recognizing an experiment versus observational study and knowing vocabulary within those studies (stratification, blocking, matched pairs, blind, convenience)
Problems to help you review:
Here are a few sample problems.use the list of items on the study guide to better prepare by looking at old study guides, notes, returned tests, etc.
1. Given the following set of data: 34, 12, 33, 17, 17, 18, 21, 20, 34, 33, 7, 16
a) Find the mean, median, and standard deviation
b) If all of the data is increased by 3, what would the new mean, median and standard deviation be?
c) If all of the data is multiplied by 5, what would the new mean, median and standard deviation be?
d) If the number 7 was replaced with 5, which of the following measures would change? (circle all that apply)
Mean Median Standard Deviation Mode
2. Given a computer printout of data: [lowest data points are 21, 22 and the highest are 78, 90]
n Mean Median TruMean StDev SE Mean
100 52 46 42.1 3.2 .42
Min Max Q1 Q3
21 90 30 50
a) What shape does this data have and explain how you know the shape.
b) Using the five-number summary, determine the percent of data that exists for each:
X < 30__________ 21 < x < 46____________ X > 30_______ 30 < x < 50__________
c) Sketch a box-plot for the data
3. A horses mean weight is 972 pounds with a standard deviation of 34 pounds
a) A horse must weigh at least 960 pounds to be considered healthy enough to race. What is the probability that a horse healthy enough to race weighs less than 980 pounds?
b) If we obtained a sample of 50 horses, what would the probability be that they had an average weight of at least 980?
c) Beethoven is a horse who is at the first percentile for weight..what does he weigh?
4. When a significance test to determine whether the dogs were getting too heavy (as compared to the average weight of 32.8 pounds) had concluded at the 10% level, the power level was registered at 0.72 and the p-value was computed to be 0.12.
a) State the hypotheses for the test
b) Explain a Type I error in context and compute the probability of committing one
c) Explain a Type II error in context and compute the probability of committing one
d) Which conclusion to the study is correct?
a. With a low p-value, this is a significant result and the dogs are too heavy
b. With a p-value that is not low, this is not significant so the dogs are not significantly overweight
5. A random sample of 40 yellow labradors indicated a mean weight of 72 pounds with a standard error of 1.1 pounds.
Construct and interpret a 90% confidence interval for the mean weight of a sample of yellow labradors.
6. continued from #5, if we were to increase the sample size to be 25 times that which was initially used for the interval, how would its width change?
7. If we were to adjust the confidence interval to that of 95% confidence, from the initial interval in #5, how would its width change?
+,ab " # $ : }rdYNh;hF8OJQJh;h$mOJQJh;hP\n5>*OJQJh;hF+OJQJhvOJQJhF+OJQJh;hrOJQJh;hvOJQJh;hP\nOJQJh;hH"vOJQJhAMhF+ hr5hAMh$m5hAMhk5hAMhK5hAMhr5hAMhFYq5hAMh5`5 hF+5 hv5b A
\
N1z9
gdAM
^gdAMgdFYq
@
A
B
[
\
]
{
'3MNO0123gyz:
;
ԛԐԱԱԱԹhaOJQJh;hlOJQJh;hkOJQJh;h_OJQJhF+OJQJhxOJQJhX?OJQJh;hMxOJQJh;hvOJQJh;hF8OJQJh;h$mOJQJh;hP\nOJQJ0
.O\d167=ǻttiti^P^P^h;hS56OJQJh;hSOJQJh;hAMOJQJh;hlOJQJh;hBN0OJQJh;hBN056OJQJh;hBN05OJQJh;hF8OJQJh;hVOy5OJQJh;hF+6OJQJhv6OJQJh;hMx6OJQJh;hMxOJQJha5>*OJQJh;hl5>*OJQJX@RbSTwxyz{|}~gdAM abgʾvk`UMhw5bOJQJh;hvOJQJh;hw5bOJQJh;h{LOJQJh;h(OJQJh;hAM5OJQJh;hBN05OJQJh;he5OJQJh56OJQJh;h(56OJQJh;h(5OJQJh;h(6OJQJh;hS5OJQJh;hlOJQJh;hF+OJQJhSOJQJ<=Swx ǼװxmeǼZZOhF+hF+OJQJh;heOJQJhEUOJQJh;h(OJQJhU=5OJQJhahA 5OJQJhah05OJQJh;hMxOJQJh;hMx5OJQJh;hS5OJQJh;hF+OJQJhF+OJQJhvOJQJh;hvOJQJhOJQJh;hlOJQJh;hSOJQJ~
defgdAM
2Bcdefhijklo_`:;?@ļϥvk`vXvPhw5bOJQJh&pOJQJh;hw5bOJQJh;hOJQJh;h&pOJQJhaha5OJQJhah&p5OJQJh;h&p5OJQJh;hv5OJQJh;hF+OJQJhvOJQJh;hvOJQJh;heOJQJh;hc.8OJQJhF+OJQJh;hU=OJQJheOJQJfghijk`:;<=>?@AogdAM@Ano)*+,-0CF
ǻzrzrjzzbZbrRhAMOJQJhF+OJQJhvOJQJhxOJQJhU=OJQJh;hAMOJQJh5OJQJhahv5OJQJhU=5OJQJhahAM5OJQJh;hc.85OJQJh;hv5OJQJh;hF+OJQJhkOJQJh;hc.8OJQJhw5bOJQJhaOJQJh;hvOJQJ *+,
BC^`gdAMgdAM.13&BCDEƺxmiehXhsh;h;OJQJh;h;5OJQJhaOJQJh;hAMOJQJh;hvOJQJhahv5OJQJhahAM5OJQJh;hAM5OJQJh;hv5OJQJh;hU=OJQJhOJQJhF+OJQJhAMOJQJh;hF+OJQJCDEgdAM21h:pBN0/ =!"#$%j666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JkNormaldCJ_HaJmH sH tH DA D
Default Paragraph FontRiR0Table Normal4
l4a(k (
0No List(
Table Grid7:V0dCJOJPJQJ^JaJPK![Content_Types].xmlj0Eжr(Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu*Dנz/0ǰ$X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6_rels/.relsj0}Q%v/C/}(h"O
= C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xmlM
@}w7c(EbˮCAǠҟ7՛K
Y,
e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+&
8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3ڗP
1Pm\\9Mؓ2aD];Yt\[x]}Wr|]g-
eW
)6-rCSj
id DЇAΜIqbJ#x꺃6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8քAV^f
Hn-"d>znǊ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QDDcpU'&LE/pm%]8firS4d7y\`JnίIR3U~7+#mqBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCMm<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6+_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
EE6
@E
~fCE8@0(
B
S ?E MVBFbeAGpxMVBF33333333T
T
v
v
y
eh
:?*+CFABBCFT
T
v
v
y
eh
:?*+CFF54vj=aAMr\#(
*F+q\.|}/BN0lk6F8c.8U=\9>c?EU5`w5bDbkP\n&pFYqH"vVOy krel X?Mx`$mxKX;j0!l{LSA s_BD@@sEX@UnknownG*Ax Times New Roman5Symbol3.*Cx Arial9Garamond7.@CalibriA$BCambria Math"qh[[K;' $n20:;2HX $PFYq2!xxDawnDawnOh+'0l
(4
@LT\dDawnNormal.dotmDawn3Microsoft Office Word@vA@hE@P2sa@2)a՜.+,D՜.+,4hp
Microsoft:TitleH 6>
MTWinEqns
!"#%&'()*+,-./012456789:<=>?@ABERoot Entry FFDEaGData
1Table$WordDocument46SummaryInformation(3DocumentSummaryInformation8;CompObjy
F'Microsoft Office Word 97-2003 Document
MSWordDocWord.Document.89q