Assessment

viewing Content

1 The Mole: A Measurement of Matter

- List three common ways that matter is measured. Give examples of each.
- Name the representative particle (atom, molecule, or formula unit) of each substance.
 - a. oxygen gas
- b. sodium sulfide
- c. sulfur dioxide
- d. potassium
- How many hydrogen atoms are in a representative particle of each substance?
- a. Al(OH)3
- **b.** H₂C₂O₄
- c (NH₄)₂HPO₄
- d. C₄H₁₀O
- which contains more molecules: 1.00 mol H₂O₂, 1.00 mol C₂H₆, or 1.00 mol CO?
- Which contains more atoms: 1.00 mol H₂O₂, 1.00 mol C₂H₆, or 1.00 mol CO?
- 52. Find the number of representative particles in each substance.
 - a. 3.00 mol Sn
- **b.** 0.400 mol KCl
- c. 7.50 mol SO2
- d. 4.80×10^{-3} mol NaI
- 53. Calculate the molar mass of each substance.
- a. HaPO
- b. N₂O₃
- c. CaCO₃
- e. C₄H₉O₂ f. Bra d. (NH₄)₂SO₄ 4. Calculate the mass of 1.00 mol of each of these
 - substances. a. silicon dioxide (SiO₂)
 - b. diatomic nitrogen (N2)
 - c. iron(III) hydroxide (Fe(OH)₃)
 - d. copper (Cu)
- 55. List the steps you would take to calculate the molar mass of any compound.
- 56. What is the molar mass of chlorine?
- 57. Construct a numerical problem to illustrate the size of Avogadro's number. Exchange problems with a classmate and then compare your answers.

10.2 Mole-Mass and Mole-Volume Relationships

- 58. How many moles is each of the following?
 - a. 15.5 g SiO,
- **b.** 0.0688 g AgCl
- c. 79.3 g Cl, d. 5.96 g KOH e. 937 g Ca(C₂H₃O₂)₂ f. 0.800 g Ca
- 59. Find the mass of each substance.
- a. 1.50 mol C₅H₁₂
- **b.** 14.4 mol F₂
- c. 0.780 mol Ca(CN)₂ d. 7.00 mol H₂O₂
- e. 5.60 mol NaOH
- **f.** 3.21×10^{-2} mol Ni

- 60. Calculate the volume of each of the following gases at STP.
 - a. 7.6 mol Ar
- b. 0.44 mol C₂H₆
- 61. What is the density of each of the following gases at STP?
 - a. C₃H₈
- b. Ne
- c. NO₂
- 62. Find each of the following quantities.
 - a. the volume, in liters, of 835 g SO₃ at STP b. the mass, in grams, of a molecule of aspirin $(C_9H_8O_4)$
 - c. the number of atoms in 5.78 mol NH₄NO₃

10.3 Percent Composition and Chemical Formulas

- 63. Calculate the percent composition of each compound.
 - a. H₂S
- **b.** $(NH_4)_2C_2O_4$
- c. Mg(OH),
- d. Na₃PO₄
- 64. Using your answers from Problem 63, calculate the number of grams of these elements.
 - a. sulfur in 3.54 g H₂S
 - b. nitrogen in 25.0 g (NH₄)₂C₂O₄
 - c. magnesium in 97.4 g Mg(OH)₂
 - d. phosphorus in 804 g Na₃PO₄
- 65. Which of the following compounds has the highest iron content?
 - a. FeCla
- **b.** Fe(C₂H₃O₂)₃ d. FeO
- c. Fe(OH)2
- 66. You find that 7.36 g of a compound has decomposed to give 6.93 g of oxygen. The only other
 - element in the compound is hydrogen. If the molar mass of the compound is 34.0 g/mol, what is its molecular formula?
- 67. Which of the following can be classified as an empirical formula?
 - a. S2Cl2
- b. C₆H₁₀O₄
- c. Na₂SO₃
- 68. What is the molecular formula for each compound? Each compound's empirical formula and molar mass is given.
 - a. CH₂O, 90 g/mol
- b. HgCl, 472.2 g/mol
- 69. Determine the molecular formula for each compound.
 - a. 94.1% O and 5.9% H; molar mass = 34 g
 - b. 50.7% C, 4.2% H, and 45.1% O; molar mass = 142 g

Assessment 315

- 61. a. 1.96 g/L
 - **b.** 0.902 q/L
 - c. 2.05 g/L
- **62. a.** 234 $\stackrel{\square}{L}$ SO₃ **b.** 2.99 × 10⁻²² g C₉H₈O₄
 - **c.** 3.13×10^{25} atoms
- 63. a. 5.9% H, 94.1% S
 - **b.** 22.6% N, 6.5% H, 19.4% C, 51.6% O
 - c. 41.7% Mg, 54.9% O, 3.4% H
 - d. 42.1% Na, 18.9% P, 39.0% O
- **64. a.** 3.33 g S
 - **b.** 5.65 g N

- c. 40.6 g Mg
- d. 152 q P
- 65. d. 77.7% Fe in FeO
- **66.** H₂O₂
- 67. a. molecular
 - b. molecular
 - c. empirical
- 68. a. C₃H₆O₃
 - b. Hg₂Cl₂
- 69. a. H₂O₂
 - **b.** $C_6H_6O_4$

CHAPTER

Assessment

Reviewing Content

- 47. Number, mass, or volume; examples will vary.
- 48. a. molecule
 - b. formula unit
 - c. molecule
 - d. atom
- 49. a. 3
 - **b.** 2
 - c. 9
 - **d.** 10
- **50.** All contain 6.02×10^{23} molecules
- **51.** 1.00 mol C₂H₆
- **52. a.** 1.81×10^{24} atoms Sn
 - **b.** 2.41×10^{23} formula units KCl
 - c. 4.52×10^{24} molecules SO_2
 - d. 2.89×10^{21} formula units Nal
- 53. a. 98.0 g/mol
 - **b.** 76.0 g/mol
 - c. 100.1 g/mol
 - d. 132.1 g/mol
 - e. 89.0 g/mol
- f. 159.8 g/mol 54. a. 60.1 g/mol
 - **b.** 28.0 g/mol
 - c. 106.8 g/mol
- d. 63.5 g/mol 55. Answers will vary but should
 - include 1. Determine the moles of each
 - atom from the formula. 2. Look up the atomic mass of each element.
 - 3. Multiply the number of moles of each atom by its molar mass.
 - 4. Sum these products.
- **56.** 71.0 g/mol Cl₂
- 57. Answers will vary.
- **58. a.** 0.258 mol SiO₂
 - **b.** 4.80×10^{-4} mol AgCl
 - c. 1.12 mol Cl₂
 - d. 0.106 mol KOH
 - e. 5.93 mol Ca(C₂H₃O₂)₂
 - **f.** 2.00×10^{-2} mol Ca
- **59. a.** 108 g C₅H₁₂
 - **b.** 547 g F₂
 - c. 71.8 g Ca(CN)₂
 - **d.** 238 g H_2O_2
 - e. 224 g NaOH f. 1.88 g Ni
- **60. a.** 1.7×10^2 L Ar
 - b. 9.9 L C2H6