Honors Biology Photosynthesis & Cellular Respiration Lecture Notes Carmel High/Dooner

ENERGY, PHOTOSYNTHESIS, and RESPIRATION

- PHOTOSYNTHESIS is the main ENERGY ACQUIRING Pathway
- CELLULAR RESPIRATION is the main ENERGY RELEASING Pathway
- Energy fuels "metabolism"
- **METABOLISM**: the summation of all the chemical reactions which occur in cells

ENERGY-CARRYING MOLECULES:

1) ATP- Adenosine Tri-Phosphate

- a nucleic acid
- a short-term energy carrying molecule that moves energy from one chemical reaction to another
- converts form from ADP(Adenosine DI- Phosphate) to ATP(Adenosine TRI-Phosphate

ADP releases energy Exertonic

- when the third Phosphate is released, energy is released

2) Co-Enzymes:

- a) NAD to NADH
- b) FAD to FADH
- c) NADP(in plants) to NADPH
- all of these molecules can carry hydrogens ions(instead of phosphate groups as in ATP) in order to store and release energy)

PHOTOSYNTHESIS

- the conversion of LIGHT ENERGY into CHEMICAL ENERGY which gets STORED in COVALENT BONDS
- the END PRODUCTS of Photosynthesis(Glucose and Oxygen) become the starting point of Cellular Respiration
- the END PRODUCTS of Cellular Respiration(Carbon Dioxide and Water) become the starting point of Photosynthesis
- Priestly's "Bell Jar" experiments looked at the impact of placing a candle in a bell jar with a mouse and the impact of a candle and a plant in the bell jar with the mouse

PIGMENT MOLECULES:

 any kind of molecule that absorbs LIGHT of some wavelengths and reflects light of other wavelengths

CHLOROPHYLL:

- main photosynthetic pigment in plants
- located inside CHLOROPLASTS
- not water soluble
- uses all light EXCEPT the "green" wavelengths

CAROTENOIDS:

- accessory pigments
- capture light in the violet, blue, and green spectrum and therefore are visible as yellow, red, and orange
- the type of light energy that is absorbed by all of these pigments then sets up a CHAIN OF CHEMICAL REACTIONS

Thylakoid Membranes:

- they have chlorophyll molecules embedded in them
- they are located inside the chloroplast(in the granum)
- LIGHT REACTIONS OCCUR HERE

Stroma:

- the liquid INSIDE the chloroplast where <u>CARBON</u> <u>FIXATION takes place</u>

ENERGY CAPTURE:

- 1) Light hits chlorophyll; some wavelengths are absorbed
- 2) Light energy gets transferred to molecules
- 3) H2O splits!- this sets up reactions where electrons move and O2 is released as a byproduct
- 4) Electron movement generates ATP and NADPH2

CARBON FIXATION:

- 1) A complex set of reactions begins which links Carbon Atoms together(CO2) was the source
 - 2) ATP and NADPH2 from the Light Reactions(Energy Capture) are used to "DONATE" energy to form CHEMICAL BONDS
 - 3) GLUCOSE IS MADE!!!!!

Importance of Photosynthesis for Life:

- 1) GENERATION OF OXYGEN
- 2) SOURCE OF **ENERGY** for:

Autotrophs

Plants

Algae

Cyanobacteria

Heterotrophs

* animals

* fungi

* protists/bacteria

3) SOURCE OF <u>CARBON</u> for the creation of ORGANIC MOLECULES(carbon dioxide is the source of the carbon in the organic molecules of plants- remember Van Helmont!)

EQUATION FOR PHOTOSYNTHESIS:

6002+6420 -> C641206+602

Honors Biology Chapter 8 Photosynthesis "Using Visuals"

<u>INSTRUCTIONS</u>: With a partner, analyze Figure 8-7 on page 209 and answer the following questions:

1. What materials come into the chloroplast that are used in the light-dependent

	reactions?
	What material comes into the chloroplast that is used in the Calvin
	cycle?
	reactions? What materials move out of the chloroplast from the Calvin cycle?
	cycle?
6.	cycle?
•	ze Figure 8-11 on page 212 and answer the following questions about the n Cycle:
Calvi	
Calvi 1.	n Cycle:
1. 2.	Where does the Calvin Cycle take place?
1. 2.	Where does the Calvin Cycle take place?
1. 2. 3. 4.	Where does the Calvin Cycle take place?
1. 2. 3. 4.	Where does the Calvin Cycle take place? What enters the Calvin Cycle from the atmosphere? Where do the ATP and NADPH come from? What is the product of this cycle?