Small-Scale LAB

I & E Standard: 1d

Analysis of Anions and Cations

Purpose

To develop tests for various ions and use the tests to analyze unknown substances.

Materials

- pencil
- ruler
- medicine droppers
- chemicals shown in Figures A and B
- paper
- reaction surface
- pipet

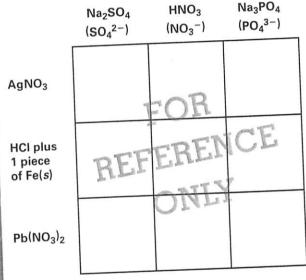
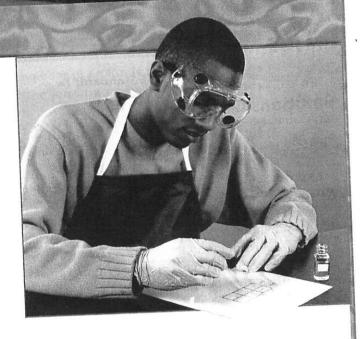



Figure A Anion Analysis

	ΚI (K ⁺)	CaCl ₂ (Ca ²⁺)	FeCl ₃ (Fe ³⁺)
NaOH		FOR	ICE
KSCN	REI	ONL	

Figure B Cation Analysis

Procedure 🖺 🗟 🕱 🔁 💗 🍑

On one sheet of paper, draw grids similar to Figure A and Figure B. Draw similar grids on a second sheet of paper. Make each square 2 cm on each side. Place a reaction surface over the grids on one of the sheets of paper and add one drop of each solution or one piece of each solid as shown in Figures A and B. Stir each solution by blowing air through an empty pipet. Use the grids on the second sheet of paper as a data table to record your observations for each solution.

Analyze

Using your experimental data, record the answers to the following questions below your data table.

- 1. Carefully examine the reaction of Fe(s) and HCl in the presence of HNO₃. What is unique about this reaction? How can you use it to identify nitrate ion?
- 2. Which solutions from Figure A are the best for identifying each anion? Which solutions from Figure B are the best for identifying each cation? Explain.
- 3. Can your experiments identify K⁺ ions? Explain.

You're the Chemist

The following small-scale activities allow you to develop your own procedures and analyze the results.

- 1. Design It! Obtain a set of unknown anion solutions from your teacher and design and carry out a series of tests that will identify each anion.
- 2. Design It! Obtain a set of unknown cation solutions from your teacher and design and carry out a series of tests that will identify each cation.
- 3. Design It! Obtain a set of unknown solid ionic compounds from your teacher. Design and carry out a series of tests that will identify each ion present.