Chemistry of Life(Organic Chemistry)

Carbon skeletons:

- Are the "backbone" of organic molecules
- Consist of carbon atoms bonded covalently together
- There are four main types:
 - 1) CARBOHYDRATES
 - 2) LIPIDS
 - 3) NUCLEIC ACIDS
 - 4) PROTEINS

Monomers:

- A single unit(molecule)
- Building blocks that can hook together to form MACROMOLECULES(polymers)

Polymers:

-large molecules made up of many monomers

CARBOHYDRATES

- Composed of Carbons, Hydrogens, and Oxygen atoms
- They are "sugars" in their simplest form
- They are HYROPHILIC because they are POLAR

STRUCTURE OF CARBOHYDRATES:

The monomers of carbohydrates are simple sugars

- 1) MONOSACCHARIDES: one sugar molecule
- 2) **DISACCHARIDES**: two sugar molecules
- 3) POLYSACCHARIDES: many sugar molecules

MONOSACCHARIDES:

- Composed of 5 or 6 carbon rings

a) GLUCOSE: C6H12O6

This is the form our cells use for ENERGY

b) FRUCTOSE: C6 H12 06

- Bonded differently and tastes sweeter

<u>ISOMERS</u>- molecules that have the same formula(number and type of atoms) but are DIFFERENT because they are arranged differently; Glucose and Fructose are isomers

DISACCHARIDES:

 A good example is SUCROSE which is a single GLUCOSE molecule bonded to a single FRUCTOSE molecule

WHY is the formula of sucrose 2 Hydrogen and I oxygen LESS than you would expect?

**** Because...... It is a <u>CONDENSATION REACTION</u>(a synthetic reaction) in which one molecule of WATER comes out of the reaction(2 H's and one O!)

- 1) STARCH: many glucoses hooked together; SOLUBLE
- 2) <u>CELLULOSE:</u> same as starch but arranged differently; used in PLANT CELL WALLS; <u>NON-SOLUBLE</u>
- 3) <u>GLYCOGEN:</u> many glucoses arranged differently; found in ANIMALS; <u>SOLUBLE</u>

FUNCTIONS OF CARBOHYDRATES

- 1) **ENERGY STORAGE**—save excess sugars
 - a) **STARCH**: in plants LONG-TERM STORAGE
 - b) GLYCOGEN: in animals LONG-TERM STORAGE
 - c) SIMPLE SUGARS(glucose) SHORT- TERM STORAGE

2) STRUCTURAL:

- a) <u>CELLULOSE</u>—forms the main portion of the body of PLANTS; NON-SOLUBLE; rigid
- b) <u>CHITIN</u>—forms the OUTER SKELETON of Arthropods and INSECTS and the cell walls of FUNGI

LIPIDS

- NON-POLAR MOLECULES THAT DO NOT DISSOLVE IN WATER
- Composed of C's and H's(and some O's)
- The most basic form is called a FATTY ACID(the building blocks of lipids)

- a) Saturated Fatty Acids
 - Found in animals
 - All <u>single</u> bonds between carbons; more hydrogens than unsaturated fatty acids
- b) **Unsaturated Fatty Acids**
 - Found in plants
 - One or more double bonds between carbons
 - Fewer hydrogens than saturated fatty acids

FATS AND OILS(TRIGLYCERIDES)

- Composed of 3 FATTY ACIDS and a GLYCEROL
 - a) <u>FAT</u>- solid at room temperature (generally found in ANIMALS)
 - b) OIL- liquid at room temperature (generally found in PLANTS)

FUNCTION OF LIPIDS

*** VERY LONG TERM ENERGY STORAGE

PHOSPHO-LIPIDS:

- Are the main component of CELL MEMBRANES
- The structure of phosphor-lipids looks like triglycerides except with a PHOSPHATE GROUP instead of one or two fatty acids
- The phosphate portion is SOLUBLE

STEROIDS:

- Large molecules composed of 4 rings
- They are NON-POLAR
- Examples are hormones such as ESTROGEN and TESTOSTERONE
- <u>CHOLESTEROL</u> is a steroid; it is needed for proper functioning of the nerves and is embedded in the cell membranes of animals

- The LIVER makes 85% of cholesterol in humans; DIET provides the other 15%
- Cholesterol is also needed to produce vitamin D

WAXES:

- Form WATER-PROOF BARRIERS
- Examples include coatings on leaves; bird feathers, etc

NUCLEIC ACIDS

- Composed of C's, H's, O's, N's, and P's
- The monomers are NUCLEOTIDES
- DNA is a nucleic acid; contains genetic information
- RNA is also a nucleic acid
- ATP is a nucleic acid; an energy carrying molecule

NUCLEOTIDES:

3 PARTS: a 5 carbon <u>SUGAR</u>(either ribose or deoxyribose)
a <u>PHOSPHATE</u> GROUP(phosphorus and oxygens)
a <u>NITROGENOUS BASE</u>(1 or 2 rings carbon/nitrogen

***NUCLEIC ACIDS ARE MACROMOLECULES MADE UP
OF REPEATING CHAINS OF NUCLEOTIDES

PROTEINS

- Composed of C, H, O, N, and Sulfurs
- Monomers of proteins are AMINO ACIDS
- Amino acids are basically... C-C-N

*** the "R-group" can be anything from a single H, to CH3, several C's, H's, O's, etc.

**** LIVING ORGANISMS USE 20 DIFFERENT AMINO ACIDS

*** amino acids form PEPTIDE BONDS TO FORM PROTEINS

- The sequence of the amino acids is what determines which protein is made

ESSENTIAL AMINO ACIDS:

- There are 8 EAA for humans
- Our bodies CANNOT make them; we must get from diet

COMPLETE PROTEIN:

- Contains all 8 EAA in correct amounts
- Animal proteins are complete proteins but plant proteins are incomplete
- This can be offset by <u>PROTEIN</u>

 <u>COMPLEMENTATION</u>(combining plant proteins in correct way to get all 8 EAA)

FUNCTIONS OF PROTEINS:

1) <u>ENZYMES</u>: protein molecules that act as CATALYSTS in chemical reactions; names end in – ASE(i.e.lactase)

2) STRUCTURAL:

- a) **COLLAGEN**: makes up tendons etc in vertebrates
- b) **KERATIN**: makes up hair, nails, horns, hoofs
- 3)HORMONES: insulin is the smallest protein, made up of 51 amino acids; insulin gets glucose through to the cells

4) MOVEMENT(CONTRACTILE PROTEINS)

- muscle fibers
- flagella in single-celled organisms
- cilia(hair-like projections from the cell membrane for movement or "sweeping"

5 TRANSPORT PROTEINS

- Part of the Cell Membrane
- Allow substances to pass through the membrane

6) ANTIBODIES:

- Produced by the <u>IMMUNE SYSTEM</u>
- They bind to foreign particles to destroy them

*** PROTEINS ARE SENSITIVE TO TEMPERATURE AND TO pH

ENZYMES

- ENZYMES are PROTEINS that "CATALYZE' biochemical reactions without altering the reaction equilibrium
- The activities of enzymes depend on:
- TEMPERATURE
- IONIC CONDITIONS
- pH OF THE SURROUNDINGS

<u>CATALYST:</u> a substance that SPEEDS UP the rate of a chemical reaction

- almost all enzymes are protein catalysts made by LIVING ORGANISMS
- enzymes speed up reactions by REDUCING the ACTIVATION ENERGY required for the reaction, BUT...
 the enzymes ARE NOT CONSUMED BY THE REACTIONS THEY PROMOTE!!!!

<u>ACTIVATION ENERGY</u>: the amount of energy that is needed to get a reaction started

*** Cells use enzymes to speed up their reactions