$\lambda v = c$

- 1. Use the equation above to solve the following problems. Each member of the group take one problem, then walk the others through your solution step by step.
- a) What is the frequency of ultraviolet light with a wavelength of 2.64 x 10*-8m?
- b) What is the wavelength of gamma ray electromagnetic radiation with a frequency of 2.93 x 10*20 Hz?
- c) Calculate the wavelength of yellow light emitted by a sodium lamp with a frequency of 5.15 x 10*14 Hz.
- d) What is the wavelength of radiation with a frequency of 1.50 x 10 *13 Hz?

$\Delta E = hc/\lambda$

- 1. Use the equation above to calculate the energy change involved when light is emitted at the following wavelengths:
- ~a) 510 nm
- **b) 400 nm**
- c) 570 nm
- d) 660 nm
- 2. Each member of the group should solve one of the problems above and then walk the others through your solution step by step.

- 1. Which principal quantum number describes the electron's spin? What is the symbol for it? What are the possible values?
- 2. Write the quantum numbers for the first electron in the 4s orbital of a calcium atom.
- 3. Write the electron configuration for the element whose last electron has the following quantum numbers:

4. When L = 3, what are the possible values of m_{1,2}

- 1. When writing the electron configuration for an element, identify the following:
- a) the "coefficient"
- b) the "letter(s)"
- c) the "superscript"

2. Write the complete electron configuration for the first 18 elements. Use one piece of scrap paper for the group and each person in the group take a turn writing a configuration while the others monitor and guide.

- 1. What is an "orbital box diagram"?
- 2. What are the basic rules that must be followed when constructing one, and when filling with electrons?
- 3. What symbols do we use for electrons when filling an Orbital Box diagrams?
- 4. On one piece of scrap paper for the group, take turns constructing orbital box diagrams for elements # 1, 3, 5, 6, 9, 11, 13, and 15.

- 1. As a group, construct a definition of the following:
 - a) Hund's Rule
 - b) Heisenberg Uncertainty Principle
 - c) Pauli Exclusion Principle
- 2. As a group, construct an explanation of the primary differences between the Bohr Model of atomic structure and the Quantum Mechanical Model of atomic structure.
- 3. Be sure to include the difference an "orbit" and an "orbital".

- 1. What is represented by the "Principal Quantum Number"?
- 2. What are the four letters which correspond to the four possible "shapes" of orbitals?
- 3. What orbitals are in the following energy levels:

1st Level:

2nd Level:

3rd Level:

4th Level:

- 4. How can we use "Noble Gas shorthand/abbreviation" to write the electron configurations of the following elements:
- a) Mg
- b) F
- c) Ca
- d) Ti
- 5. What is the "Aufbau" method, what does it loosely translate to, and why are Chromium and Copper exceptions to it? Are they the only exceptions?

- 1.Following Aufbau, Pauli, and Hund, write the electron configuration that you would EXPECT for chromium.
- 2.Now—write what the electron configuration for chromium ACTUALLY is.
- 3. Explain why chemists believe this exception to Aufbau occurs.
- 4. Repeat #1-3 above for Copper.