Honors Bio/CP Chem Mr. Dooner/CHS Intro Chem Notes

INTRODUCTORY CONCEPTS

ELEMENT: one of the 107(+) presently known fundamental substances that cannot be broken down chemically into any simpler substance

NOTE: Only 90 are naturally occurring; the "transuranium" (after Uranium) elements were synthesized and identified in laboratory experiments through the use of nuclear accelerators

- most of the symbols are simply the first one or two letters of the element name, such as "H"(Hydrogen) and "Al"(Aluminum), but others("Na"= "natrium"= sodium) are derived from Latin or other language names
- although many of the elements may seem unfamiliar, at least 20 are essential for human life
- 99% of the elements comprising living organisms are:
 - C- CARBON
 - H- HYDROGEN
 - O- OXYGEN
 - N- NITROGEN
 - P- PHOSPHORUS
 - S- SULFUR
- the other 1% required in organisms are called TRACE ELEMENTS:
 - Calcium- Ca
 - Iron- Fe
 - Magnesium- Mg

<u>ATOMS:</u> the smallest and simplest piece that an element can be broken into while still maintaining the chemical properties of the element

SUBATOMIC PARTICLES: an elementary particle from which atoms are made

PROTON- a positively(+) charged subatomic particle found in the nucleus

NEUTRON- an electrically neutral subatomic particle found in the nucleus

ELECTRON- a negatively(-) charged subatomic particle found around the nucleus at a distance

ATOMIC MASS UNIT: (amu) a convenient unit of mass on the atomic scale; approximately equal to the mass of a proton or neutron

DALTON: an alternate name for Atomic Mass Unit

ATOMIC NUMBER: the primary characteristic that distinguishes atoms of different elements; it equals the number of PROTONS in an atom's nucleus

ATOMIC# = # of PROTONS

MASS NUMBER: the sum of an atom's PROTONS and NEUTRONS

MASS # = #PROTONS + #NEUTRONS

***** the most important characteristic of protons and electrons is that they are ELECTRICALLY CHARGED

- 2 protons REPEL each other
- 2 electrons REPEL each other
- a proton and an electron ATTRACT each other

***** each atom contains an EQUAL number of protons and electron so that overall they are electrically neutral; they have NO NET CHARGE(IN THEIR NATURAL STATE)

***** in general, atoms contain at least as many neutrons as protons, but there is no simple way to predict how many neutrons a GIVEN atom will have

ATOMS AND MOLECULES

MOLECULE: a group of atoms BONDED together in a DISCRETE UNIT

<u>CHEMICAL REACTION</u>: a chemical CHANGE brought about by making and breaking bonds between atoms

CHEMICAL COMPOUND: a chemical substance formed by joining together atoms of different elements

REACTANT: a STARTING substance that undergoes change in a chemical reaction

PRODUCT: a substance formed AS A RESULT of a chemical reaction

LAW OF DEFINITE PROPORTIONS

- every chemical compound is formed by a combination of elements in a DEFINITE PROPORTION
 - atoms join together in a definite composition to make molecules
 - this is one of the CORNERSTONES of Chemistry
 - elements NEVER combine in random to make compounds
 - All water molecules, for example, consist of 2 hydrogen atoms and 1 oxygen atom
 - ALL sucrose molecules, for example, consist of 12 carbon atoms, 22 hydrogen atoms, and 11 oxygen atoms

THE PERIODIC TABLE

<u>PERIODIC TABLE</u>: the standard chart displaying the elements in order of increasing atomic number so that elements with SIMILAR PROPERTIES fall into GROUPS

<u>PERIOD</u>: a HORIZONTAL ROW of elements in the Periodic Table; elements are listed in order of INCREASING ATOMIC NUMBER

GROUP: a VERTICAL column of elements in the Periodic Table

*** ELEMENTS IN A GROUP HAVE SIMILAR CHEMICAL PROPERTIES

MAIN GROUP: an element on the FAR RIGHT(Groups 3A- 8A) or the FAR LEFT(Groups 1A- 2A) of the Periodic Table

TRANSITION METAL GROUP: an element group in the MIDDLE(1B- 10B) of the Periodic Table

ALKALI METAL: an element in Group 1A of the Periodic Table (Li, Na, K, Rb, Cs, Fr)

ALKALINE EARTH METAL: an element in Group 2A of the Periodic Table (Be, Mg, Ca, Sr, Ba, Ra)

<u>HALOGEN</u>: an element in Group 7A of the Periodic Table (F, Cl, Br, I, At)

*** NOBLE GAS: an element in Group 8A of the Periodic Table (He, Ne, Ar, Kr, Xe, Rn)

METAL: a MALLEABLE element with a LUSTROUS appearance that is a good CONDUCTOR of heat and electricity

NONMETAL: an element on the RIGHT SIDE of the Periodic Table that is a POOR CONDUCTOR of heat and electricity

GROUP CHARACTERISTICS OF THE ELEMENTS

GROUP 1A: ALKALI METALS

- Lithium, sodium, potassium, rubidium, and cesium are SHINY, SOFT, LOW MELTING METALS; ALL REACT VIOLENTLY WITH WATER

- because of their HIGH REACTIVITY, the Alkali Metals are NEVER found in nature in the pure state but only in chemical combination with other elements

GROUP 2A: ALKALINE EARTH METALS

- Beryllium, magnesium, calcium, strontium, barium, and radium are also LUSTROUS, SILVERY METALS, but all are LESS REACTIVE THAN THEIR NEIGHBORS IN GROUP 1A

GROUP 7A: HALOGENS

- Fluorine, chlorine, bromine, iodine, and astatine are REACTIVE, CORROSIVE, NONMETALS; the halogens in nature are found only in combination with other elements, such as sodium in table salt(sodium chloride)

- the name "Halogen", in fact, derives from the Greek word "Hals" meaning "salt"

GROUP 8A: NOBLE GASES

- Helium, neon, argon, krypton, xenon, and radon are gases of EXTREMELY LOW REACTIVITY

- Helium, neon, and argon don't react with any other element; krypton, xenon, and radon react with very few

METAL/NONMETAL DIVIDING LINE

- the dividing line follows a ZIG-ZAG path angling from BORON at the top middle of the Table to the lower right hand corner

LEFT OF THE LINE: Metallic Properties

RIGHT OF THE LINE: non-metals(solid, liquid, and gas)

ISOTOPES: atoms of the SAME ELEMENT that have DIFFERENT numbers of NEUTRONS in their nuclei

*****ISOTOPES HAVE THE SAME ATOMIC NUMBERS BUT DIFFERENT MASS NUMBERS

- for example, Hydrogen has three isotopes:

PROTIUM- one proton and NO Neutrons MASS # = 1

DEUTERIUM- one proton and one neutron MASS # = 2

TRITIUM- one proton and two neutrons MASS #=3

*** if we had a large number of hydrogen atoms, we would find that 99.985 % of them had a Mass # 1(Protium) and 0.015 % had Mass # 2(Deuterium)

***the AVERAGE mass of a large number of an element's atoms is called the element's ATOMIC WEIGHT(ATOMIC MASS) *** Hydrogen has an atomic mass of 1. 008

- different isotopes are represented by a format in which the mass number is given as a SUPERSCRIPT and the atomic number is given as a SUBSCRIPT

*** the example above is an isotope of Hydrogen called Tritium which has one proton and two neutrons

NAMES AND SYMBOLS FOR SOME COMMON ELEMENTS

Al-	Aluminum	He-	Helium	Si- Silicon
Ar-	Argon	H-	Hydrogen	S- Sulfur
Ba-	Barium	I-	Iodine	Zn- Zinc
B -	Boron	Li-	Lithium	Cu- Copper
Br-	Bromine	Mg-	Magnesium	Fe- Iron
Ca-	Calcium	Mn-	Manganese	Pb- Lead
C-	Carbon	N-	Nitrogen	Hg- Mercury
Cl-	Chlorine	O -	Oxygen	K- Potassium
F-	Fluorine	P-	Phosphorus	Ag- Silver
Na-	Sodium		<u>-</u>	_

The Structure of Atoms

TERMS:

<u>Nucleus</u>: the dense, positively charged mass at the center of an atom where protons and neutrons are located

ENERGY LEVEL(Shell): an imaginary layer surrounding an atom's nucleus where electrons are located

<u>SUB-ENERGY LEVEL</u>(Sub-Shell): a subregion of an Energy Level where electrons of the same energy are located

<u>ORBITAL</u>: a specifically shaped region of space around an atom, denoted by s, p, d, or f, where electrons of a specific energy level are found

ELECTON CONFIGURATION: the specific way that an atom's electrons are distributed into Energy Levels and orbitals

3 Rules for Determining Configurations

- 1. FIND THE <u>ATOMIC NUMBER</u> OF THE ELEMENT TO SEE HOW MANY ELECTRONS IT HAS.
- 2. BEGIN ASSIGNING ELECTRONS TO ORBITALS ACCORDING TO THE ORDER SHOWN ON THE CHART. FILL THE LOWEST ENERGY ORBITALS BEFORE MOVING TO HIGHER LEVELS. REMEMBER THAT EACH ORBITAL HOLDS ONLY 2 ELECTRONS AND NO MORE.
- 3. IF 2 OR MORE ORBITALS HAVE THE SAME ENERGY(FOR EXAMPLE, THE THREE "p" ORBITALS OR THE FIVE "d" ORBITALS, FILL ALL ORBITALS HALF-WAY BEFORE COMPLETELY FILLING ANY ONE OF THEM.

THE OCTET RULE

*** Atoms undergo reactions in order to attain a "noble- gas configuration" with 8(or 2 in the case of H and He)outer energy level electrons(i.e. "valence" electrons)

- one way that atoms can attain a noble gas configuration is by either GAINING or LOSING an appropriate number of electrons

FOR EXAMPLE: when a Sodium atom loses one electron it becomes a positively charged Sodium "ION"

When a Chlorine atom gains an electron it becomes a negatively charged Chloride "ION"

- *** Losing Electrons means the atom becomes a POSITIVE ION(+)
- *** Gaining Electrons means the atom becomes a NEGATIVE ION(-)

IONS AND IONIC BONDS

ION: an electrically charged atom or group of atoms

CATION: a POSITIVELY CHARGED ION(+)

ANION: A NEGATIVELY CHARGED ION(-)

IONIC BOND: the electrical attraction between an <u>ANION</u> and a CATION

<u>IONIC SOLID</u>: a chemical compound held together by ionic bonds between ANIONS and CATIONS(i.e. NaCl)

<u>IONIC COMPOUNDS</u>: generally, metallic elements on the far left side of the Periodic Table are able to GIVE UP ELECTRONS and become POSITIVELY CHARGED CATIONS(Groups 1A, 2A)

- Non-metallic elements on the far right side of the Periodic Table are able to ACCEPT ELECTRONS and become NEGATIVELY CHARGED ANIONS(Groups 6A, 7A)

OXIDATION-REDUCTION REACTIONS

*** in describing the formation of IONS by the gain or loss of electrons, the terms OXIDATION and REDUCTION are often used

OXIDATION: the LOSS of electrons by a reactant in a chemical reaction

REDUCTION: the GAIN of electrons by a reactant in a chemical reaction

OXIDATION AGENT: the reactant that causes an oxidation by TAKING electrons

REDUCING AGENT: the reactant that causes a reduction by GIVING electrons

OXIDATION STATE: the charge of an ION

"REDOX" REACTIONS: a general term for a reaction by which oxidations and reductions occur

- Redox reactions are NOT limited to just the ALKALI and the ALKALINE EARTH METALS
- many of the TRANSITION METALS can also form CATIONS by giving up electrons

FOR EXAMPLE: ALUMINUM(Group 3A) gives up all 3 electrons in its outer energy level in reacting with Chlorine to form Aluminum Chloride, AlCl₃ NOTE: Al^{3+*} has an OXIDATION STATE of +3)

COVALENT BONDS

- Ionic bonding does not account for the formation of all compounds
- for example, H, O, N, F, Cl, Br, and I all exist NOT as individual atoms but as <u>DIATOMIC</u> <u>MOLECULES</u> in which 2 atoms are bonded together-- H2, O2, N2, F2 etc

COVALENT BOND: a bond that results when 2 atoms **SHARE** one or more pairs of electrons

- Covalent Bonds are far more common that IONIC BONDS
- almost all molecules in living things are held together by Covalent Bonds

COVALENCE: the number of POSSIBLE Covalent Bonds that could be formed by an atom of a particular element in a molecule

*** the number of possible bonds it could form is based on its Electron Configuration and its number of outer energy level(Valence) electrons; for example, CARBON in Group 4A with 4 Valence electrons has a Covalence of 4(8-4=4); HYDROGEN in Group 1A with 1 Valence electron has a Covalence of 1(2-1=1)

WAYS OF REPRESENTING MOLECULES:

<u>LEWIS STRUCTURE</u>: a way of representing molecules by using DOTS to represent outer energy level electrons

. О:Н

<u>LINE BOND STRUCTURE</u>: a way of respresenting molecules by using LINES between the element symbols to represent COVALENT BONDS

H-0-H

<u>CONDENSED STRUCTURE</u>: a shorthand way of representing molecules without showing individual bonds

ELECTRO-NEGATIVITY:

*** the ability of an atom TO ATTRACT ELECTRONS to itself(i.e. within a molecule, one of the atoms will DISPROPORTIONATELY ATTRACT the electrons to itself because of its greater mass and more positively charged nucleus)

*** in an H2O molecule, we say that the OXYGEN atom is electronegative

POLAR COVALENT BOND:

*** a covalent bond in which one atom attracts bonding electrons MORE STONGLY than the other(s)

POLARIZED:

*** we say that a molecule is "Polarized" when it has a partial POSITIVE and partial NEGATIVE CHARGE as a result of being in a POLAR COVALENT BOND

WATER IS A POLAR MOLECULE

HYRDOGEN BOND:

*** a WEAK attraction between a Hydrogen in one molecule and a nearby Oxygen, Nitrogen, or Fluorine in a nearby molecule

*** it is an INTER-MOLECULAR ATTRACTION

*** the negative side of one water molecule will be attracted to the positive side of an adjacent water molecule and this is called a HYDROGEN BOND

WATER

*** water molecules are POLAR and attracted to each other by HYDROGEN BONDS

*** other types of molecules are characterized and defined by whether they are SOLUBLE(can dissolve) in water or not:

- 1) HYDROPHILIC(water-loving); can dissolve; these are polar molecules
- 2) HYDROPHOBIC (water-fearing); cannot dissolve; nonpolar molecules

CHARACTERISTICS OF WATER:

- 1) Universal Solvent
- 2) Strong ADHESIVE and COHESIVE properties--i.e. surface tension
- 3) High heat capacity(specific heat)
- 4) High Boiling Point and Melting Point- it takes high energy input to change states
- 5) LESS Dense when it freezes than when liquid- i.e. ice floats
- 6) High thermal conductivity- i.e. distributes heat well

pH of a SOLUTION

*** pH is a measure of the ACIDITY or ALKALINITY of a solution
*** many molecules DISSOCIATE when dissolved in water-- they come apart and form IONS

*****Water molecules themselves DISSOCIATE(come apart) about

2 molecules per BILLION

*** pH measures how many H+(Hydrogen ions) are in a solution

- molecules can be characterized as releasing hydrogens(H+) or Hydroxyls(OH-)

- pH was first described by a German chemist in 1909 and stands for "potenz" Hydrogen which means "power" or "Concentration" or "potential of" Hydrogen

ACIDS:

Release H+ when dissolved

HCI= H+ CI

BASES:

Release OH- when dissolved or "take up" H+ from a solution i.e. NA+ + OH

PH Levels: Cells are VERY sensitive to ACIDITY levels

PH Scale:

***the scale is <u>LOGARITHMIC</u>; i.e. pH of 6 is TEN times more ACIDIC than a pH of 7

*** the scale goes from 0 to 14 with "7" being pure water in which the number of H+ is EQUAL TO the number of OH-

*** low pH values correspond to a strongly acidic solution

*** high pH values correspond to a strong basic solution

Some Common Acids:

Acetic Acid

CH3COOH

Hydrochloric Acid

HCl

Nitric Acid

HNO3

Phosphoric Acid

H3PO4

Sulfuric Acid

H2SO4

Some Common Bases:

Ammonia

NH4

Carbonate Ion

HCO3

Sodium Hydroxide

NaOH

CHEMICAL REACTIONS

- molecules interacting with each other to either MAKE or BREAK BONDS is what is occurring in Chemical Reactions; the molecules are in MOTION
- KINETIC ENERGY is the energy of MOTION
- the STATE of the MOLECULE(solid, liquid, gas) is largely dependent upon the amount of ENERGY they possess

*** CHEMICAL REACTIONS ARE EITHER SYNTHETIC or DEGRADATIVE

- 1) <u>SYNTHETIC REACTIONS</u>: molecule building in which atoms bond together; Energy is required to form Bonds
- 2) <u>DEGRADATIVE REACTIONS</u>: bonds are broken(with input of energy) and energy is released(in living organisms a molecule called ATP(adenosine triphosphate) captures that energy for future use by the cell