CHAPTER 7: CELLULAR RESPIRATION AND FERMENTATION

FOCUS QUESTIONS

- 7.1. $C_6H_{12}O_6$; 6 CO_2 ; energy (ATP + heat)
- 7.2. a. oxidized
 - b. reduced
 - c. donates (loses)
 - d. oxidizing agent
 - e. accepts (gains)
- 7.3. a. O₂
 - b. glucose
 - c. Some is stored in ATP and some is released as heat.
- **7.4. a.** electron acceptor (or carrier or shuttle). It is a coenzyme that works with enzymes called dehydrogenases.
 - b. NADH
- 7.5. a. 2 ATP
 - **b.** 2 three-carbon sugars (glyceraldehyde-3-phosphate)
 - c. 2 NAD+
 - d: $2 \text{ NADH} + 2 \text{H}^{+}$
 - e. 4 ATP
 - f. 2 pyruvate
- 7.6. a. pyruvate
 - b. CO₂
 - c. $NADH + H^+$
 - d. coenzyme A
 - e. acetyl CoA
 - f. oxaloacetate
 - g. citrate
 - h. NADH + H+
 - i. CO₂
 - j. CO₂

- k. $NADH + H^+$
- 1. GTP (may make ATP)
- m. FADH₂
- n. $NADH + H^+$
- 7.7. a. intermembrane space
 - b. inner mitochondrial membrane
 - c. mitochondrial matrix
 - d. electron transport chain
 - e. NADH
 - f. NAD⁺
 - g. FADH₂
 - h. $2 H^+ + \frac{1}{2} O_2$
 - i. H₂O
 - i. chemiosmovsis
 - k. ATP synthase
 - 1. ADP + $(P)_i$
 - m. ATP
- 7.8. a. -2
 - b. 4
 - c. citric acid cycle
 - d. 26 or 28
 - e. 32
 - f. 2
 - **g.** 6
 - h. 2
 - i. 2
- 7.9. Respiration yields up to 16 times more ATP than does fermentation. By oxidizing pyruvate to CO₂ and passing electrons from NADH (and FADH₂) through the electron transport chain, respiration can produce a maximum of 32 ATP compared to the 2 net ATP that are produced by fermentation.

1. Use Focus Questions 7.5, 7.6, and 7.7 to help you review these pathways.

3.

Process	Brief Description	Inputs	Output 2 pyruvate 4 ATP (2 net) 2 NADH	
Glycolysis	Oxidation of glucose to 2 pyruvate, production of 2 ATP net	glucose 2 ATP		
Pyruvate to acetyl CoA and citric acid cycle	Oxidation of pyruvate to acetyl CoA, which combines with oxaloacetate → citrate. Citrate is cycled back as redox reactions produce NADH and FADH₂ and CO₂ is released. ATP is formed by substrate-level phosphorylation.	2 pyruvate 2 oxaloacetate	6 CO ₂ 8 NADH 2 FADH ₂ 2 ATP	
Oxidative phosphorylation (Electron transport and chemiosmosis)	NADH and FADH ₂ transfer electrons to an electron transport chain. In a series of redox reactions, H ⁺ is pumped into intermembrane space, and electrons pass to O ₂ . Protonmotive force drives H ⁺ through ATP synthase to make ATP.	10 NADH 2 FADH ₂ H ⁺ + O ₂	H ₂ O 28 ATP (max)	
Fermentation	Anaerobic catabolism: glycolysis followed by oxidation of NADH to NAD ⁺ so glycolysis can continue. Pyruvate is either reduced to ethyl alcohol and CO ₂ or to lactate.	See glycolysis above 2 pyruvate 2 NADH	2 ATP 2 NAD ⁺ 2 ethanol and 2 CO ₂ or 2 lactate	

ANSWERS TO TEST YOUR KNOWLEDGE

Multiple Choice:

1. a	4. e	7. b	10. a	13. e	16. d	19. e	21. b
2. d	5. c	8. b	11. a	14. d	17. b	20. c	22. c
3 C	6. d	9. d	12. d	15. e	18. c		