Biology 1st Qtr Notes Mr. Dooner Introductory Concepts

LEVELS OF ORGANIZATION

Atoms

Molecules

Cells
(All organisms are made up of one or more cells)

Tissues

Organs

Organism (an individual living thing)

Population (group of individuals of same species)

Community (populations of many species)

ECOSYSTEM (Communities + Abiotic factors)

BIOSPHERE

***** BIOLOGY ENCOMPASSES ALL OF THESE LEVELS OF ORGANIZATION

Biotic: living

Abiotic: non-living

CHARACTERISTICS OF LIFE

- 1) All organisms are composed of **CELLS**
 - the cell is the basic unit of life
 - organisms can be:
 - a) UNI-CELLULAR- single cell; or,
 - b) MULTI-CELLULAR- more than one cell
- 2) All organisms are **COMPLEX** and **HIGHLY ORGANIZED**
 - all organisms are composed of <u>ORGANIC MOLECULES</u>(large <u>CARBON-BASED</u> molecules)
 - all organisms share similarities in chemical composition
- 3) All organisms contain **GENETIC INFORMATION**
 - contained in <u>DNA(Deoxyribonucleic Acid</u>) which provides "instructions" to the cells
- 4) All organisms require **ENERGY**:
 - a) AUTOTROPHS- get energy from the Sun or chemicals
 - b) **HETEROTROPHS** get energy from other organisms
 - *** PLANTS are AUTOTROPHS
 - *** ANIMALS AND FUNGI ARE HETEROTROPHS
 - *** "TROPH" means "to feed"
- 5) All living things require **NUTRIENTS**:
 - Heterotrophs get Energy AND Nutrients together in the form of FOOD
 - Autotrophs get Energy from the Sun BUT get their NUTRIENTS FROM THE PHYSICAL ENVIRONMENT

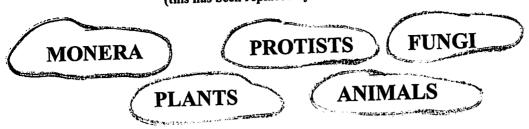
***ALL ORGANISMS ARE INTER-DEPENDENT
ON EACH OTHER FOR ENERGY AND NUTRIENTS

- 6) All living things undergo DEVELOPMENT
 - all organisms have a LIFE CYCLE of events from Birth to Death
 - "grow" and "develop" do not mean the same thing

- "DEVELOP" means structures within organisms can change and produce other structures
- the GROWTH of organisms **INVOLVES** Development

GROW — DEVELOP — AGE(Senescence)

- 7) REPRODUCTION is a characteristic of all living things
 - Reproduction is the production of <u>OFFSPRING</u> from one OR more parents
 - the FUNCTION is to <u>PERPETUATE</u> the species of organisms
 - there are 2 main types of reproduction:
 - a) <u>SEXUAL</u>- sperm + egg= zygote
 - two parents
 - b) <u>ASEXUAL</u>- genetically identical offspring one parent


*** ASEXUAL REPRODUCTION IS MORE COMMON IN PLANTS THAN IN ANIMALS;

WHEN SEEN IN ANIMALS, IT IS MORE COMMON IN INVERTEBRATES(animals without backbones) THAN IN VERTEBRATES(animals with backbones)

- 8) Living things $\underline{SENSE\ CHANGES}$ in the environment and RESPOND:
 - all organisms RESPOND to <u>INTERNAL and EXTERNAL</u> <u>STIMULI</u>
- 9) Life evolves and through evolution LIVING ORGANISMS ARE ADAPTED TO THEIR ENVIRONMENTS
 - *** Evolve= to change over time
 - *** <u>Evolution</u>= lineages of organisms changing from one generation to the next
- 10) Living things maintain <u>INTERNAL STABILITY</u> even though their environment is changing (this is <u>HOMEOSTASIS</u>- "steady state")

5 KINGDOM CLASSIFICATION SCHEME

(this has been replaced by a "Domain" system)

- we classify into progressively smaller categories called TAXA(singular: "TAXON"); they are:

KINGDOM

PHYLUM(DIVISION in Plants/Fungi)

CLASS

ORDER

FAMILY

GENUS

SPECIES

*** a mnemonic device for remembering this could be:

"Keep Pots Clean Or Family Gets Sick" and

"Keep Dishes Clean Or Family Gets Sick"

EVOLUTION AND NATURAL SELECTION (a preview)

- EVOLUTION is a major theoretical concept in the biological sciences
- <u>NATURAL SELECTION</u> is the mechanism for evolutionary change in populations
- there are differences among individuals in a population in SURVIVAL and REPRODUCTION
- organisms that have inherited features which allow them to be well-suited to their environment have greater survival and reproduction----so their offspring become more numerous in the next generation

NATURAL SELECTION(a summary)

- 1) Individuals that have features that make them better suited to their environments(<u>ADAPTATIONS</u>) leave more offspring than others without those features.
- 2) Individuals with those adaptations become more numerous in subsequent generations
- 3) Over time, the <u>GENETIC COMPOSITION</u> of a population <u>CHANGES</u>: in other words, the population is "EVOLVING"

***POPULATIONS EVOLVE, NOT INDIVIDUALS

Micro-Evolution Vs Macro-Evolution

- many of the conflicts/misunderstandings surrounding the teaching of evolutionary theory are related to the failure to distinguish between "micro-evolution" and "macro-evolution"
- beginning around 1927, biologists began to distinguish between macro- and micro- evolutionary phenomenon

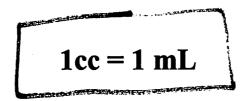
MICRO-EVOLTION:

- changes occur <u>within</u> a species over time; these change are observable by scientists; in essence, they are <u>factual</u>
- examples include:

 Bacterial adaptations
 Insect adaptations
 Selective breeding of domestic plants and animals

MACRO-EVOLUTION:

- refers to changes between species over long periods of time
- broad, universal changes in life forms(across species and even Kingdoms) from the earliest primitive organisms to the full biodiversity which exists today
- these changes are not directly observable by scientists and must rely on indirect evidence, hypothetical examples, observation and inference, computer modeling, fossil evidence, and biochemical comparisons


COMMON METRIC PREFIXES

<u>KILO</u>- means "1000' of a unit of measure <u>EXAMPLE</u>: 1 kilogram= 1,000 grams

<u>CENTI</u>- means "1/100" of a unit of measure <u>EXAMPLE</u>:1 centimeter=1/100 meter

MILLI- means 1/1000 of a unit of measure EXAMPL.:1 millimeter=1/1000 meter

NOTE: a cubic centimeter(called a "cc" in medicine) is the same as a milliliter

1 centimeter cubed = 1 milliliter