## **MATH ONE-Release Items**

- **1.** If the point A = (-4, 8) and is rotated 90° clockwise about the point (0, 0), then A' =
  - **a.** (4,8)
- **b.** (-4, -8)
- **c.** (4, -8)
- **d.** (8,4)
- **2.** The point (-4, 6) is a solution to which of the following system(s)? (Select all that apply.)
- **a.**  $\begin{cases} x + 2y = 8 \\ -4x y = 10 \end{cases}$
- **b.**  $\begin{cases} x + 2y \le 8 \\ -4x y < 10 \end{cases}$  **c.**  $\begin{cases} x + 2y < 8 \\ -4x y \ge 10 \end{cases}$

- $\mathbf{d.} \begin{cases} x + 2y \ge 8 \\ -4x y \le 10 \end{cases}$
- e.  $\begin{cases} x + 2y > 8 \\ -4x y > 10 \end{cases}$



- 3. The explicit function for the sequence above is:
- **a.** f(x) = 3x + 1

**b.**  $f(x) = 1 \cdot 4^x$ 

**c.** f(x) = 4x - 3

- **d.**  $f(x) = \frac{1}{4} \cdot 4^x$
- **4.** Which explicit function best matches the recursive function:

$$f(1) = -4$$
,  $f(x) = f(x - 1) + 4$ ?

**a.** 
$$f(x) = -4x + 4$$

**b.** 
$$f(x) = 4x$$

**c.** 
$$f(x) = 4x - 4$$

**d.** 
$$f(x) = 4x - 8$$

Match each equation on the left with its rate of change on the right.

**5.** 
$$f(x) = -4x + 3$$

**a.** 
$$-\frac{3}{4}$$

**6.** 
$$3x + 4y = -12$$

7. 
$$f(x) = 4 \cdot 3^x$$

**8.** 
$$y = 4(x - 3) + 12$$

- **d.** No constant rate of change
- **9.** On a graph, the equation f(x) = g(x) 6 would mean that
  - a. f(x) would be shifted up 6 units from g(x)
- b. f(x) would be shifted down 6 units from g(x)
- c. f(x) would be shifted left 6 units from g(x)
- d. f(x) would be shifted right 6 units from g(x)

- **10.** If the point A = (-4, 8) and is rotated  $90^{\circ}$  counter-clockwise about the point (0, 0), then A' =
  - a. (4,8)
- b. (-4, -8)
- c. (4, -8)
- d. (-8, -4)

- **45.** The graph to the right represents:
  - a. Unimodal Data
  - **b.** Bimodal Data
  - c. Multimodal Data
  - d. Uniform Data
- **46.** The graph to the right also represents:
  - a. Left Skewed Data
  - **b.** Right Skewed Data
  - c. Normal Data
  - **d.** None of the above

