Math Analysis Release Items 2015

Open Ended Question

(a) Are there any real solutions to the given equation? If yes, find all possible solutions. If not, justify why

 $(a^4 - 2a^2b^2 + b^4)^{x-1} - \frac{(a-b)^{2x}}{(a+b)^2} = 0$ where a > b > 0 are two real numbers.

The distance between a point P(x, y) and point Q(0, 3) is $\frac{3}{2}$ of the distance between the point P(x, y) and the line y = -2. Find the equation of the curve on which the point P lies.

(a)
$$4x^2 - 5y^2 - 60y = 0$$

(a)
$$4x^2 - 5y^2 - 60y = 0$$
 (b) $4x^2 + 5y^2 - 60y + 9 = 0$ (c) $4x^2 = 5y + 9$ (d) $x^2 - y^2 - 12y - 9 = 0$ (e) $4x^2 - 5y^2 - 60y - 27 = 0$

(c)
$$4x^2 = 5y + 9$$

(d)
$$x^2 - y^2 - 12y - 9 = 0$$

0 (e)
$$4x^2 - 5y^2$$

(c)
$$4x^2 = 5$$

The vertex of the parabola $y = -2x^2 + 4x + 6$ is

(a)
$$(-1,3)$$

(b)
$$(1, -8)$$
 (c) $(1, 8)$

(d)
$$(-1,0)$$

Consider the graph of the equation $9x^2 + 4y^2 = 36$. Find the equation of the graph obtained by rotating the given graph by an angle 90° in the counter clockwise direction.

(a)
$$\frac{x^2}{36} + y^2 = 1$$
 (b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (c) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (d) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ (e) None of the above

(b)
$$\frac{x^2}{4} + \frac{y^2}{9} =$$

(c)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

(d)
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

The domain of a rational function is all real numbers not equal to -2, 2 and 5 and the function eventually grows to positive infinity. Which of the following is a possible expression for this rational function?

(a)
$$f(x) = \frac{x^3 + 1}{x(x^2 - 4)(x - 5)}$$

(b)
$$f(x) = \frac{x^5 + 2x - 1}{(x^2 - 4)(x - 5)}$$

(c)
$$f(x) = \frac{x^2 + 1}{(x^2 - 4)(x - 5)}$$

(a)
$$f(x) = \frac{x^3 + 1}{x(x^2 - 4)(x - 5)}$$
 (b) $f(x) = \frac{x^5 + 2x - 1}{(x^2 - 4)(x - 5)}$ (c) $f(x) = \frac{x^2 + 1}{(x^2 - 4)(x - 5)}$ (d) $f(x) = -\frac{x^4 + 1}{(x^2 - 4)(x - 5)}$ (e) $f(x) = \frac{x^5 + 1}{x(x^2 - 4)(x + 5)}$

(e)
$$f(x) = \frac{x^5 + 1}{x(x^2 - 4)(x + 5)}$$

Which equation represents the graph?

(a)
$$(x-2)^2 = 3y$$

(b)
$$\frac{y^2}{9} - \frac{(x-2)^2}{4} = 1$$

(c)
$$\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$$

(a)
$$(x-2)^2 = 3y$$
 (b) $\frac{y^2}{9} - \frac{(x-2)^2}{4} = 1$ (c) $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$ (d) $\frac{(y-2)^2}{4} + \frac{x^2}{9} = 1$ (e) $y^2 = 3(x-2)$

(e)
$$y^2 = 3(x-2)$$