- 10. The volume of a square-bottomed box with no top has a volume of 500 cubic inches. The minimum possible surface area of the box is in which of the following intervals?
 - (a) (265,295)
 - (b) (305,335)
 - (c) (345,375)
 - (d) (385,415)
 - (e) None of the above
- 11. For $g(x) = x(\ln x)^2$, evaluate the limit:

$$\lim_{x \to e} \frac{g(x) - g(e)}{x - e}.$$

- (a) 1
- (b) 2
- (c) e
- (d) 3
- (e) None of the above
- 12. For what value of k does $\lim_{x\to 2} \frac{x^2+3x+k}{x-2}$ exist?
 - (a) -10
 - (b) -6
 - (c) -2
 - (d) 4
 - (e) No such value exists
- 13. Which of the following integrals gives the length of the path described by parametric equations $x = t + \cos t$, $y(t) = t \sin t$, $0 \le t \le 2\pi$?

(a)
$$\int_0^{2\pi} \sqrt{(1-\sin t)^2 + (1-\cos t)^2} \, dt$$

(b)
$$\int_{0}^{2\pi} \sqrt{(t+\cos t)^2 + (t-\sin t)^2} \, dt$$

(c)
$$\int_0^{2\pi} \sqrt{\left(\frac{t^2}{2} + \sin t\right)^2 + \left(\frac{t^2}{2} - \cos t\right)^2} dt$$

(d)
$$\int_0^{2\pi} \sqrt{1 + (1 - \sin t)^2} dt$$

(e)
$$\int_0^{2\pi} \sqrt{1 + (1 - \cos t)^2} dt$$

- 14. Evaluate $\int \frac{\cot^3 t}{\csc t} dt$.
 - (a) $-\csc t \sin t + C$
 - (b) $\frac{1}{4} \cot^4 t + C$
 - (c) $-\csc t + C$
 - (d) $-\frac{1}{4}\cos^4 + C$
 - (e) None of the above
- 31. If you evaluate the integral $\int x^3 e^x dx$, what is the sum of the numerical coefficients of all terms other than the constant of integration?
 - (a) -8
 - (b) -2
 - (c) 4
 - (d) 16
 - (e) None of the above
- 32. The integral $\int \frac{x^2 dx}{\sqrt{x^2 4}}$ can be transformed into which of the following integrals using a trigonometric substitution?
 - (a) $\int 4 \sec^3 \theta \, d\theta$
 - (b) $\int 4\sin^2\theta \,d\theta$
 - (c) $\int 4 \tan^2 \theta \sec \theta \, d\theta$
 - (d) $\int -4\cos^2\theta \,d\theta$
 - (e) None of the above
- 33. For a fixed constant a > 0, the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n (an)^2 (x-a)^n}{a^n}$$

converges on which of the following intervals?

- (a) (-a, a)
- (b) (0, 2a)
- (c) (-1,1)
- (d) $(-a^2, a^2)$
- (e) $(-\infty, \infty)$