- 4. Given that $g(x) = \arctan(\frac{1}{x})$, evaluate $\lim_{h\to 0} \frac{g(2+h) g(2)}{h}$
 - (a) 4/5
- (b) 1/2
- (c) -1/5 (d) $\frac{\ln(2)}{2}$
- 5. The line tangent to $h(x) = x^3 5x^2 x + 3$ at the point (1, -2) has an x-intercept of
 - (a) 0
- (b) 0.75
- (c) 3
- (d) 6
- 9. The smallest possible value of x where $f(x) = \frac{x}{x^2+a}$ has an inflection point is
 - (a) \sqrt{a}
- (b) $\sqrt{2a}$
- (c) $\sqrt{3a}$
- (d) $a\sqrt{2}$

- 10. Which of the following is incorrect?
 - (a) $\frac{d}{dx}(2^x) = 2^x \ln(2)$
- (b) $\frac{d}{dx}(\log_4(x)) = \frac{1}{x \ln(4)}$
- (c) $\frac{d}{dx}(x^x) = x^x[1 + \ln(x)]$ (d) $\frac{d}{dx}(a^{u(x)}) = a^{u(x)}\ln(a)$
- 14. For what value(s) of a does $f(x) = x^3 + ax^2 + bx + 2$ have a local maximum at x = -3 and a local minimum at x = -1?
 - (a) 6
- (b) 9
- (c) both 6 and 9
- (d) there are no such values
- 30. Let $f(x) = \frac{c}{x} + x^2$ Determine all values of c for which f(x) has a relative minimum, but no relative maximum.
 - (a) $c > \sqrt[3]{2}$
- (b) $|c| > \sqrt[3]{2}$ (c) all values of c
- (d) there are no such values of c

- 16. What is the area of the largest rectangle that has its base on the x-axis and its other two vertices on the parabola $y = 8 - x^2$?
 - (a) $\frac{32\sqrt{6}}{9}$
- (b) $\frac{2\sqrt{6}}{3}$
- (c) $\frac{8}{9}$
- (d) $\frac{64\sqrt{6}}{9}$
- 17. Which integral does the following limit represent?

$$\lim_{n\to\infty}\sum_{i=1}^\infty\frac{\pi}{4n}\sin\frac{\pi n+\pi i}{4n}$$

(a) $\int_0^{\frac{\pi}{2}} \sin(x + \frac{\pi}{4}) dx$

- (b) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x) dx$ (c) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin(x + \frac{\pi}{4}) dx$

- (d) $\int_0^{\frac{\pi}{4}} \sin(x) dx$
- 35. Differentiate $f(x) = x^{\sqrt{x}}$
 - (a) $(\sqrt{x})x^{\sqrt{x}-1}$ (b) $x^{\frac{3}{2}\sqrt{x}}$
- (c) $\frac{\sqrt{x}}{x} + \frac{\ln(x)}{2\sqrt{x}}$ (d) $x^{\sqrt{x}} \frac{2 + \ln(x)}{2\sqrt{x}}$

44. Find the derivative of

$$\frac{\sqrt{x} - 1}{\sqrt{x} + 1}$$

- (a) $\frac{1}{x\sqrt{x}+2x+\sqrt{x}}$
- (b) 1

- (c) $\frac{4}{\sqrt{x}}$
- (d) $\frac{\sqrt{x-1}}{2\sqrt{x+4x+1}}$