Integrated Math 3
Algebra Pre-requisites
Day 5 Quadratic Formula

Name	
Date	\$10000000000000000000000000000000000000
Period	

1. Simplify each expression.

$$\frac{4 - \sqrt{(-4)^2 - 4(2)(-3)}}{2(2)}$$
a.
$$\frac{4 - \sqrt{(-4)^2 - 4(2)(-3)}}{2(2)}$$
b.
$$\frac{-8 - \sqrt{(8)^2 - 4(10)(2)}}{2(10)} = \frac{-8 - \sqrt{64 - 80}}{20}$$

$$= \frac{-8 - 466}{20}$$

$$\frac{-8 - \sqrt{64 - 80}}{2(10)}$$

$$= \frac{-8 - 466}{200}$$
c.
$$\sqrt{-80}$$
d.
$$\sqrt{200}$$

$$\sqrt{200}$$

2. Solve the equation by using the quadratic formula. Remember the quadratic formula is:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{36 - 4(1)(8)}}{2(1)}$$

b. Now solve the equation by factoring.

$$(x+4)(x+2)=0$$

$$=0$$

$$=0$$

$$=0$$

$$x = \frac{-6+2}{2} \text{ or } x = \frac{-6-2}{2}$$

$$\left[x = -2 \text{ or } x = -4\right]$$

3. Solve the equation $2x^2 + 6x + 1 = 0$ by using the quadratic formula. Simplify the solution as much as possible.

$$x = \frac{-6 \pm \sqrt{36 - 4(2)(1)}}{2(2)}$$

$$x = \frac{-6 \pm \sqrt{28}}{4}$$

$$x = \frac{-6 \pm \sqrt{28}}{4}$$

$$x = \frac{-6 \pm 2\sqrt{7}}{4}$$

$$x = \frac{-3 \pm \sqrt{7}}{2}$$

4. The zeros of a function are also the x-intercepts of the graph of the function. The value of y is always zero along the x-axis. Find the zeros of the function $g(x) = 8x^2 + 2x - 3$ by setting \Box , then:

a. solve the equation using the quadratic formula
$$\chi = \frac{-2 \pm \sqrt{4 - 4(8)(-3)}}{2(8)}$$

$$\chi = \frac{-2 \pm \sqrt{100}}{2(8)}$$

$$\chi = \frac{-2 \pm \sqrt{100}}{2(6)}$$

$$\chi = \frac{-2 \pm \sqrt{100}}{2(6)}$$

$$\chi = -2 \pm \sqrt{100}$$

b. check your answer to part a by using graphing technology

$$7 = \frac{1}{2} \text{ or } x = \frac{-3}{4}$$

c. write the function as two factors

factors.
$$g(x) = \left(x - \frac{1}{2}\right)\left(x + \frac{3}{4}\right)$$

- 5. Find the zero of the function $h(t) = 3x^2 4x + 5$:
 - a. by using the quadratic formula

The function
$$h(t) = 3x^2 - 4x + 5$$
:

$$x = \frac{4 \pm \sqrt{16 - 4(3)(5)}}{2(3)}$$

$$x = \frac{4 \pm \sqrt{-44}}{6}$$

$$x = \frac{4 \pm \sqrt{-44}}{6}$$

c. Check your answer to part a using graphing technology. What do you notice? Explain your reasoning.