Calculus BC Release Items 2015

which of the following pairs of numbers?

	a) ·	-2, -1	b)	-1,0	c)	0, 1	d)	1, 2	e)	none of	these	100
				lylor poly		about	x = 1 for	x ln(x	x) is eva	lluated at	x = 2, wha	at is the
3	a) 1	.39	b) 1	1.42	c) 1.50)	d) 1.75	(e) None	of these		
3. Let R be the region bounded by the graphs of $y = x + 2$ and $y = x^2$. Which of the following intervals contains the volume of the solid generated when R is revolved about the line $x = 5$?												
a) ((20,	40)	b)	(40, 60) c)	(60, 8	80)	d) ([80, 100]) e)	None of th	iese
4. The graph of the function $f(x)$ consists of two parabolas where $f(x) = x^2 + 2x + 4$ if $-3 \le x < -1$ and $f(x) = x^2 - 2x - 3$ if $-1 \le x \le 6$. If $g(x)$ is the function defined by $g(x) = \int_{-3}^{x} f(t) dt$, and $g(w)$												
and $f(x)$	x) = 3	x^2-2x-	3 <i>if</i>	$-1 \le x \le$	6. If g(x) is the	e functio	on defi	ned by ¿	$g(x) = \int_{a}^{x} f(x)$	f(t) dt, and	d g(w)
$= \frac{10}{3}$ Then w												
a) - 3,	-2	b)	-1, 0.5	c)	0.5, 2	d) :	2, 3.5	e) 3	3.5, 6		
5. Rotate the region $y = \frac{1}{x}$, $y = 0$, $x = 1$, $x = 3$ about the line $x = 4$. Find the volume created. Round to the nearest tenth.												
a) 1	5.0	b)	3.4	c)	12.6	d) 4	4.0	e) 1	none of t	these		
6. Given	the s	series \sum_{1}^{∞}	$\frac{3n^2}{2^n n^2}$	$\frac{+5n}{+2^n}$, and	swer the	followi	ing shov	ving all	work.			
a.			inay	not use ti	ie Lillii	Compa	rison Te	est for t	his part.		e for the ser	
b.	Exp	olain wh	y the s	eries \sum_{1}^{∞}	$\frac{1}{2^n}$ does	not wo	rk to coı	npare v	with the	series abo	ove for the	Basic
	Co	nparisor	Test l	but does	work for	the Lir	nit Com	parison	Test.			

Carmel High School

Calculus BC

1. The slope of the tangent line to the graph of $2x^3 + y^3 - 1 = x^2y$ at the point (2, -3) is between

14. A water tank has the shape of a right circular cylinder of altitude 12 feet and radius 6 feet. If water is being pumped into the tank at a rate of 2 cubic feet per minute, approximate the rate (in feet/min) at which the water level is rising when the water is 9.325 feet deep. (nearest thousandth)

- a) 0.018
- b) 0.234
- c) 0.283
- d) 0.325
- e) none of these

15. The position of a particle moving along a line is given by $s(t) = 2t^3 - 24ct^2 + 90c^2t + 7$, $t \ge 0$, with 'c' a positive constant. For what values of t is the speed of the particle increasing? Select all that apply.

- a) 0 < t < 3c b) t > 4c c) t > 5c

- d) t > 0
- e) None of these

16. If you evaluate $\int (2x)^2 e^{5x} dx$, the sum of the numerical coefficients of all terms except the constant of integration is?

- a) .9451
- b) .9472 c) 24,560 d) 36,640
- e) none of these

17. For what values of x is $f(x) = x^4 + x^3 + 2$ concave up? Select all that apply.

- a) 1

- b) -0.667 c) -0.333 d) all real numbers e) x > 0

18. The coefficient of the term $a^{\frac{5}{2}}$ in the answer for $\int_{0}^{a+1} (x-1)\sqrt{x-1} dx$ is what value?

- a) 3/2

- b) 1 c) 2/5 d) 0 e) None of these

19. Evaluate $\int \sec^2 x \tan x \, dx$. Select all that apply.

- a) $(0.5)\sec^2 x + C$ b) $(\frac{1}{6})\sec^3 x \tan^2 x + C$ c) $(0.5)\tan^2 x + C$
- d) $\sec^2 x \tan x + C$ e) none of these

20. To evaluate the integral $\int \frac{\sqrt{x^2+9}}{x} dx$, a substitution may be made. Which of the following substitutions would eliminate the radical from the integrand? Select all that apply.

- $x = \sin(\theta)$
 - b) $x = 3 \sinh(\theta)$ c) $x = 3 \tan(\theta)$ d) $x = 3 \cos(\theta)$ e) $x = \tan(\theta)$

- 10. Given $g(x) = \arctan(\frac{1}{x})$, evaluate $\lim_{h\to 0} \frac{g(2+h)-g(2)}{h}$

- a) $\frac{4}{5}$ b) $\frac{1}{2}$ c) $-\frac{1}{5}$ d) $\frac{\ln 2}{2}$ e) none of these
- 11. Suppose that $f(x) = \int_{0.5}^{x^4} \frac{t}{\sqrt{t^3 + 2}} dt$. Then f'(1) =____.
 - a) $\frac{-4}{\sqrt{3}}$ b) $\frac{1}{\sqrt{3}}$ c) $\frac{-1}{\sqrt{3}}$ d) $\frac{4}{\sqrt{3}}$

- e) none of these

- 16. Evaluate $\int_{0}^{1} 8x^{3} e^{2x} dx$
 - a) $e^2 + 2$

- b) $e^2 + 3$ c) $e^2 + 4$ d) $e^2 + 8$ e) none of these
- 21. To evaluate the integral $\int \frac{\sqrt{x^2-9}}{x} dx$, a trig substitution may be made. The differential, dx, for the best trig substitution is
 - a) $3\cos(\theta)d\theta$

- b) $-3\sin(\theta)d\theta$ c) $3\sec^2(\theta)d\theta$ d) $3\sec(\theta)\tan(\theta)d\theta$ e) none of these
- 28. Which of the following is one of the terms of a nth degree Taylor Polynomial for $f(x) = \ln(x)$ at c = 1?

- a) $\frac{-x^2}{2}$ b) $\frac{x^3}{3}$ c) $\frac{-(x+1)^2}{2}$ d) $\frac{(x+1)^3}{3}$ e) none of these
- 34. Find the interval of convergence of the series: $1 \frac{1}{2}(x-3) + \frac{1}{3}(x-3)^2 + \dots + (-1)^n \frac{1}{n+1}(x-3)^n + \dots$
 - a) All Real numbers

- b) (2, 4) c) (1, 3) d) x = 3 only e) none of these
- 35. Given the parametric function $x = 3t^2 + 5t$, find $\frac{d^2y}{dx^2}$.
 - a) $\frac{-24}{(6t+5)^3}$ b) $\frac{-6}{6t+5}$ c) $\frac{6t+5}{-24}$ d) 0 e) none of these