Math Analysis Release Items 2015

Open Ended Question

(a) Are there any real solutions to the given equation? If yes, find all possible solutions. If not, justify why

 $(a^4 - 2a^2b^2 + b^4)^{x-1} - \frac{(a-b)^{2x}}{(a+b)^2} = 0$ where a > b > 0 are two real numbers.

The distance between a point P(x,y) and point Q(0,3) is $\frac{3}{2}$ of the distance between the point P(x,y)and the line y = -2. Find the equation of the curve on which the point P lies.

- (a) $4x^2 5y^2 60y = 0$ (b) $4x^2 + 5y^2 60y + 9 = 0$ (c) $4x^2 = 5y + 9$ (d) $x^2 y^2 12y 9 = 0$ (e) $4x^2 5y^2 60y 27 = 0$

The vertex of the parabola $y = -2x^2 + 4x + 6$ is

- (a) (-1,3)
- (b) (1, -8)
- (c) (1,8)
- (d) (-1,0)
- (e) (3,0)

Consider the graph of the equation $9x^2 + 4y^2 = 36$. Find the equation of the graph obtained by rotating the given graph by an angle 90° in the counter clockwise direction.

- (a) $\frac{x^2}{36} + y^2 = 1$ (b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$ (c) $\frac{x^2}{9} + \frac{y^2}{4} = 1$ (d) $\frac{x^2}{9} \frac{y^2}{4} = 1$ (e) None of the above

The domain of a rational function is all real numbers not equal to -2, 2 and 5 and the function eventually grows to positive infinity. Which of the following is a possible expression for this rational

- (a) $f(x) = \frac{x^3 + 1}{x(x^2 4)(x 5)}$ (b) $f(x) = \frac{x^5 + 2x 1}{(x^2 4)(x 5)}$ (c) $f(x) = \frac{x^2 + 1}{(x^2 4)(x 5)}$ (d) $f(x) = -\frac{x^4 + 1}{(x^2 4)(x 5)}$ (e) $f(x) = \frac{x^5 + 1}{x(x^2 4)(x + 5)}$

Which equation represents the graph?

- (a) $(x-2)^2 = 3y$ (b) $\frac{y^2}{9} \frac{(x-2)^2}{4} = 1$ (c) $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$ (d) $\frac{(y-2)^2}{4} + \frac{x^2}{9} = 1$ (e) $y^2 = 3(x-2)$

	Mathletics 2011		Math Analysis	I	Dr. Lipika Deka	
(4)	Which of the followir	ng complex numbe	ers is represented by	y a point on the r	eal axis of the	complex
	plane? (a) $e^{i\frac{\pi}{2}}$	(b) $\cos 2 + i \sin 2$	(c) 5	(d) 1 +	- 2i	(e) $e^{\frac{\pi}{4}i}$
(5)	A square S has sides of S by 5 cm and kee (a) $5x^2cm^2$ (e) none of the above	ping the width at (b) $6x^2cm^2$	new rectangle R is x cm. How much rectangle (c) $4x^2cm^2$	nore area does R	y increasing the have than S?	lengths
(10)	If $f(x) = \tan x$ and $(a) \tan(x^2) + \tan x$ $(d) \tan x^2 + x$	$g(x) = x^2 + x - 1,$ n $x - 1$	then which of the (b) $\tan(x^2 + x - (e))$ None of the	- 1))? (c) $\tan^2(x) + \tan^2(x)$	a $x-1$
(11)) If $y = x^2 - 3x + 7$ values? (a) $\frac{3}{2}$		the square you add (c) $\frac{3}{7}$		ich one of the fo	ollowing
(16)	The solutions of the (a) $\frac{\pi}{6}$ and $\frac{11\pi}{6}$ (e) none of the above	(b) $\frac{\pi}{6}$ and $\frac{7\pi}{6}$	$\sqrt{3}\cos x = 0$ that line (c) $\frac{\pi}{3}$ and $\frac{4\pi}{3}$	e in the interval [$(d) \frac{\pi}{3}$ and	$\begin{bmatrix} 0, 2\pi \end{bmatrix}$ are $\begin{bmatrix} 5\pi \\ 3 \end{bmatrix}$	
(17)	The long-run behav $(a) \ y = \frac{1}{\sqrt{3}t}$	for of $r(t) = \frac{1+}{3t^2+}$ (b) $y = \frac{2t^4}{\sqrt{3}}$	$\frac{2t^5}{\sqrt{3}t}.$ (c) $y =$	$2t^5$ (d)	$y = \frac{2}{3}$	(e) $\frac{2t^3}{3}$
(28)	For positive real number 1. $\log(m-n) = \log m$ II. $\log\left(\frac{m}{n}\right) = \frac{\log m}{\log n}$ III. $\log m^{-1} = \frac{1}{\log m}$ IV. $\log(m^r n) = r \log n$ V. $\log_m 1 = 0$	$m - \log n$	ich of the following a	are true?		
	(a) I, II and III (b) I, II, V	(c) IV and V	(d) II and III	(e) only IV	
(37	(a) 3 ⁻³⁰ , 2 ⁻²⁰ , (b) 1 ⁻⁵⁰⁰ 20 ⁻²	wing is ordered le 30^{-3} , 20^{-2} , 1^{-50} , 30^{-3} , 2^{-20} , 3^{-3}	0			

(c) 1^{-500} , 2^{-20} , 3^{-30} , 20^{-2} , 3^{-3}

(38) An angle of $\frac{5\pi}{3}$ radians is the same as an angle of

(a) 180°

(b) 420°

(c) 240°

(d) 30°

(e) none of the above

(45) The solution(s) of the equation $\ln x + \ln(x - 3) = 0$ is (are) (a) $x = \frac{3}{2}$ (b) x = 1 and x = 2 (c) $x = \frac{-3 \pm \sqrt{13}}{2}$ (d) $x = \frac{3 \pm \sqrt{13}}{2}$

(e) No solution

Carmel High Math Analysis

Mathletics 2013

Math Analysis Release Questions

- (2) Which of the following is NOT a vertical asymptote of the function $y = \frac{x^2 3x}{5x(4x^2 1)}$?

- (c) x = 0
- (d) $y = \frac{1}{2}$

- (b) $x = -\frac{1}{2}$ (e) none of the above
- (4) Which one of the following equations has the graph shown in the figure below?

- (a) $y = -2x^2 + 3$
- (b) $y = -2x^2 x 3$
- (c) $y = -2x^2 x + 3$

- (d) y = (x-3)(x-2)
- (e) $y = (x-1)(x+\frac{3}{2})$
- (7) If $f(x) = \frac{1}{x^3}$ and $g(x) = f(-\frac{x}{3})$, then which of the following is true? (a) g(x) = 27f(x) (b) $g(x) = -27x^3$ (c) $g(x) = -\frac{1}{27}f(x)$ (e) none of the above
- (c) g(x) = -27f(x)

- (11) The equation $x^2 + y^2 + 2x + 10y + 25 = 0$ describes a circle with
 - (a) center (-1, -5) and radius 1 (b) center (1, -5) and radius 25
- - (c) center (1,5) and radius 25
- (d) center (1,5) and radius 1
- (e) none of the above
- (34) Using properties of logarithm function expand $\ln \sqrt[5]{\frac{4x^2-1}{4x^2+1}}$.
 - (a) $5\ln(4x^2-1)-5\ln(4x^2+1)$

 - (b) $5 \ln(2x-1) + 5 \ln(2x+1) 5 \ln(4x^2+1)$ (c) $\frac{1}{5} \ln(2x-1) + \frac{1}{5} \ln(2x+1) \frac{1}{5} \ln(4x^2+1)$ (d) $\frac{1}{5} \ln(2x-1) \frac{1}{5} \ln(2x+1) + \frac{1}{5} \ln(4x^2+1)$
- (36) For a given function f(x), which of the following are always true?
 - I. If f(a) = f(b) then a = b for any a, b in the domain.
 - II. A vertical line can intersect the graph of y = f(x) at most once.
 - III. If f(x) = f(-x) for all x in the domain of f, then the graph of y = f(x) is symmetric with respect to y axis.
 - IV. For any real number a, f(ax) = af(x).
 - V. If a = b then f(a) = f(b) for any a, b in the domain.
 - (a) I, II and III
- (b) II, III and V
- (c) IV and V
- (d) II and III
- (e) only V

Mathletics Contest 2014 Mathematical Analysis

-- Math Analysis --

2. The Domain of function $f(x) = 4 - \log_4 (1-x^2)$

(A) x > 0

(B) x < 4

(C) x < 1

(D) -1 < x < 1

4. Let $P = \left(\frac{8}{17}, -\frac{15}{17}\right)$ be the point on the unit circle corresponding to an angle θ .

The value of $\csc \theta$

(A) $\frac{15}{17}$ (B) $-\frac{17}{15}$ (C) $\frac{8}{17}$ (D) $-\frac{8}{17}$

8. If $2\sin^2 x = 2 - \cos x$. The value of x cannot be

 $(A) \frac{\pi}{2}$

(B) $\frac{5\pi}{3}$

(C) $\frac{3\pi}{2}$

(D) $\frac{\pi}{\epsilon}$

10. Which of the following is an exponential function?

 $(A) \pi^{-x}$

 $(B) 3\pi$

(C) πx^{-1}

(D) n-1

17. For a real number x between 0 and $\frac{\pi}{2}$, the product of tan(x) and $tan(\frac{\pi}{2}-x)$ is

(C) $\frac{\pi}{2}$

(A) 0 (B) $tan \left[x \left(\frac{\pi}{2} - x\right)\right]$ 20. $\frac{tan(x) + sin(x)}{1 + cos(x)}$ is equivalent to

(A) tan(x)

(B) sec(x)

(C) sin(x) (D) 1 + cos(x)

23. $\log (x + y) = \log (x) + \log (y)$ is true

(A) never

(B) if x+y=1 (C) if xy=0 (D) if y=x(y-1)

Open Ended Problem:

41. Find all positive values of x that satisfy $\log_{tan(x)} 2014 < \log_{tan(x)} 1007$.