9-3 The Law of Sines

Prove the Law of Sine's from the area of a triangle.

$$
K=\frac{1}{2} a b \operatorname{Sin} C=\frac{1}{2} b c \operatorname{Sin} A=\frac{1}{2} a c \operatorname{Sin} B
$$

1. A civil engineer wants to determine the distances from points A and B to an inaccessible point C. From direct measurement the engineer knows that $A B=25 m, m \angle A=110^{\circ}$, and $m \angle B=20^{\circ}$. Draw $\triangle A B C$ and find $A C$ and $B C$.

Activity

For this activity, use a ruler, compass and protractor. Draw $\angle A$ with a measure of 30°. Along one ray of $\angle A$, locate point $\mathrm{C}, 10 \mathrm{~cm}$ from point A. For each of the following compass settings, draw a large arc. Then tell whether the arc crosses the other ray of $\angle A$ and , if so, in how many points.
a. Compass at C and open to 4 cm
b. Compass at C and open to 5 cm
c. Compass at C and open to 6 cm

Now show your answers in Activity 1 agree with what the law of sines would give in each of the following SSA situations.
a. If $\angle A=30^{\circ}, b=10$, and $a=4$, and $\angle B$
b. If $\angle A=30^{\circ}, b=10$, and $a=5$, and $\angle B$
c. If $\angle A=30^{\circ}, b=10$, and $a=6$, and $\angle B$

Problem: Find all parts of the triangle if $\angle B=36^{\circ}, a=10, b=8$.

