Section 7-3 The Sine and Cosine Functions

Objective: To use the definitions of sine and cosine to find values of these functions and to solve simple trigonometric equations.

Suppose a point $\mathbf{P}(\mathbf{x}, \mathbf{y})$ is a point on the circle $x^{2}+y^{2}=r^{2}$ and θ is an angle in standard position with a terminal ray $\overrightarrow{O P}$. We define $\sin \theta$ and $\cos \theta$, by:

$$
\sin \theta=\frac{y}{r}
$$

$$
\cos \theta=\frac{x}{r}
$$

Problem \#1

If the terminal ray of an angle θ in standard position passes through the point (-2,1), find $\sin \theta$ and $\cos \theta$.

Problem \#2

What is θ and a coordinate of the terminal ray of $\sin \theta=\frac{3}{5}$?

Now do p. 269 activity.

The circle $x^{2}+y^{2}=1$ has a radius of 1 and is called the unit circle.

Problem \#3

State whether the sine and the cosine of each angle is positive, negative, one or zero.
a. $-\frac{2 \pi}{3}$
b. 180°
c. 3π
d. 70°

Problem \#4

Complete each statement using >, < or $=$.
a. $\sin 30^{\circ}$ \qquad $\sin \left(-30^{\circ}\right)$
b. $\cos 30^{\circ}$ \qquad $\cos \left(-30^{\circ}\right)$
c. $\cos 300^{\circ}$ \qquad $\cos 330^{\circ}$

