Section 8-2 Sine and Cosine Curves

Day 1

Objective: To find equations of different sine and cosine curves and to apply these equations.

Warm-up:

Graph each function using degrees and radians:

1. $y=\sin x$
2. $y=\cos x$

For functions $y=A \sin B x$ and $y=A \cos B x(A \neq 0$ and $B>0)$:

$$
\text { Amplitude }=|A| \quad \text { period }=\frac{2 \pi}{B} \text { or } \frac{360^{\circ}}{B^{\circ}}
$$

where B is the frequency.

Give the period, frequency and amplitude of each function. Then look at the graph in the calculator.

1. $y=4 \sin 2 x$
2. $y=-3 \cos \frac{1}{2} x$

Give the amplitude and period of each function. Then sketch the function.
3. $y=4 \cos 2 x$
4. $y=-3 \sin \frac{x}{2}$

$\underline{\text { Day } 2}$

Solve the equations over the domain $0 \leq \theta<360^{\circ}$ and $0 \leq x<2 \pi$.

1. a. $2 \sin x=1$
b. $2 \sin 2 x=1$
c. $2 \sin \frac{x}{2}=1$
2. $5 \sin 3 x=-2$

Day 3

Objective: To find equations of different sine and cosine curves and to apply these equations.

Warm-up.
Solve the equation for the domain $0 \leq \theta<360^{\circ}$. Give exact values and try the problem without a calculator.

1. $4 \sin 2 \theta-2=-4$
2. What would the answer be to \#1 for a domain of $(-\infty, \infty)$?

Solve the equation over the domain $0 \leq x<2 \pi$. Use a calculator and give answers to the tenth of a radian.
3. $5 \tan x+2=-2$
4. Graph the function $y=-2 \sin (3 x)$ over the domain $0 \leq \theta<360^{\circ}$.

