Section 8-2 Sine and Cosine Curves Day 1

Objective: To find equations of different sine and cosine curves and to apply these equations.

Warm-up:

Graph each function using degrees and radians:

1. $y = \sin x$ 2. $y = \cos x$

For functions $y = A \sin Bx$ and $y = A \cos Bx$ ($A \neq 0$ and B > 0):

Amplitude =
$$|A|$$
 period = $\frac{2\pi}{B}$ or $\frac{360^{\circ}}{B^{\circ}}$

where B is the frequency.

Give the period, frequency and amplitude of each function. Then look at the graph in the calculator.

1.
$$y = 4\sin 2x$$

2. $y = -3\cos\frac{1}{2}x$

Give the amplitude and period of each function. Then sketch the function.

3.
$$y = 4\cos 2x$$
 4. $y = -3\sin \frac{x}{2}$

<u>Day 2</u>

Solve the equations over the domain $0 \le \theta < 360^\circ$ and $0 \le x < 2\pi$.

1. a. $2\sin x = 1$ b. $2\sin 2x = 1$ c. $2\sin \frac{x}{2} = 1$

2. $5\sin 3x = -2$

<u>Day 3</u>

Objective: To find equations of different sine and cosine curves and to apply these equations.

Warm-up.

Solve the equation for the domain $0 \le \theta < 360^{\circ}$. Give exact values and try the problem without a calculator.

1. $4\sin 2\theta - 2 = -4$

2. What would the answer be to #1 for a domain of $(-\infty,\infty)$?

Solve the equation over the domain $0 \le x < 2\pi$. Use a calculator and give answers to the tenth of a radian.

3.
$$5 \tan x + 2 = -2$$

4. Graph the function $y = -2\sin(3x)$ over the domain $0 \le \theta < 360^{\circ}$.