Lesson 7-1 notes

Definition: 1 radian $=$ radius of a circle

Let θ be the measure of the central angle. (remember the central angle equals the measure of the arc)

If $\mathrm{s}=$ length of an arc and $\theta=\frac{s}{r}$ radians,
therefore $\theta=\frac{s}{r}=\frac{2 \pi r}{r}=2 \pi$ radians for one revolution of a circle.

So one revolution is 360° or 2π radians.

How many radians is 180° ?

Let's fill out the unit circle in radians.

1 radian $=\frac{180}{\pi}$ degrees

Or

$$
1 \text { degree }=\frac{\pi}{180} \text { radians }
$$

1. a. Convert 45° to radians in terms of π and decimals.
b. 200°
2. a. Convert $\frac{3}{2} \pi$ radians to degrees.
b. $-\frac{7}{4} \pi$

Definitions to know:

1) The radian measure of the central angle is the number of radius units in the length of an arc.
2) When an angle is shown in a coordinate plane, it usually appears in standard position, with its vertex at the origin and its initial ray along the x -axis.
3) Initial rays and terminal rays of an angle.
4) Two angles in standard position are called coterminal angles if they have the same terminal ray.
5) Positive angles open counterclockwise and negative angles open clockwise.
