Pre-Calculus
$1^{\text {st }}$ Semester Final Review
Extended Problem Practice

Name \qquad
Date \qquad

1. Let $P(x)=x^{3}+2 x^{2}-7 x+4$
a. $x=1$ is a root of $P(x)$. Completely factor $P(x)$.
b. Graph $P(x)$, clearly label all zeros and the y-intercept. You will not be able to accurately find the exact maximum or minimum without the calculator.

c. Where is $P(x)>0$?
d. Find the three values where $P(x)$ intersects the line $Q(x)=4-4 x$. Set $P(x)=Q(x)$.
2. The graph of $f(x)$ (shown below) for the given domain is $f(x)=\left\{\begin{array}{l}4-x^{2},-2 \leq x<2 \\ -\frac{1}{2} x+1,2 \leq x \leq 6\end{array}\right.$
a. List the domain and range of $f(x)$.

Domain \qquad Range \qquad

b. Sketch a graph of $|f(x)|$.

c. If $g(x)=x^{3}-7 x+5$, then find $g(f(2))$.
d. Tell why this function is not a one to one function and give specific set of points to illustrate your answer.

3. Free Response-Calculator Allowed

A box is to be made from a $20 " \times 30^{\prime \prime}$ rectangular piece of cardboard by cutting squares from the corners and folding up the sides.

a. Find the volume of the box created by cutting squares with sides of 2 ".
b. Write the height, length, width and volume of the box as functions of x as the side of the corner square.

$$
\begin{array}{ll}
h= & w \\
l= & V(x)= \\
\hline
\end{array}
$$

c. Sketch the graph of $V(x)$ over an appropriate domain and range. Label the coordinates of the maximum volume.

d. List the dimensions and volume of the largest box possible.

