FUNCTIONS To evaluate a function for a given value, simply plug the value into the function for x. **Recall:** $(f \circ g)(x) = f(g(x)) OR f[g(x)]$ read "f of g of x" Means to plug the inside function (in this case g(x)) in for x in the outside function (in this case, f(x)). **Example:** Given $f(x) = 2x^2 + 1$ and g(x) = x - 4 find f(g(x)). $$f(g(x)) = f(x-4)$$ $$= 2(x-4)^{2} + 1$$ $$= 2(x^{2} - 8x + 16) + 1$$ $$= 2x^{2} - 16x + 32 + 1$$ $$f(g(x)) = 2x^{2} - 16x + 33$$ Let $$f(x) = 2x+1$$ and $g(x) = 2x^2-1$. Find each. 1. $$f(2) = 5$$ 1. $$f(2) = 5$$ 2. $g(-3) = 17$ 3. $$f(t+1) = \frac{2t^2+4t+3}{t(t+1)} + \frac{2(t+1)^2+4}{t(t+1)} \frac{2(t+1)^2+4}{t(t+1)^2} \frac{2(t+1)^2+4}{t$$ 4. $$f[g(-2)] = 15$$ $f(-1) = 7$ $f(7) = 15$ 5. $$g[f(m+2)] = \frac{8m^2 + 40m + 49}{6} = \frac{6}{[f(x)]^2 - 2g(x)} = \frac{4x + 3}{4x + 3}$$ $f(m+1) = 2(m+2) + 1$ $= 2m + 5$ $g(2m+5) = 2(2m+5)^2 - 1$ $= 2(4m^2 + 20m + 25) - 1$ $= 2(4m^2 + 20m + 25) - 1$ $= 8m^2 + 40m + 50 - 1$ Let $f(x) = \sin(2x)$ Find each exactly. 7. $$f\left(\frac{\pi}{4}\right) = \frac{1}{\left(\frac{\pi}{4}\right)} = \frac{1}{\left(\frac{\pi}{4}\right)} = \frac{1}{\left(\frac{\pi}{4}\right)} = \frac{1}{\left(\frac{\pi}{4}\right)}$$ 8. $$f\left(\frac{2\pi}{3}\right) = \frac{-\sqrt{3}}{2}$$ $$f\left(\frac{2\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right)$$ $$= \sin\left(\frac{4\pi}{3}\right)$$ Let $f(x) = x^2$, g(x) = 2x + 5, and $h(x) = x^2 - 1$. Find each. 9. $$h[f(-2)] = 15$$ $f(-2) = -1$ $h(4) = (4)^{3} - 1$ 10. $$f[g(x-1)] = \frac{4x^2 + 4x + 1}{4x^2 + 4x + 1}$$ 11. $g[h(x^3)] = \frac{2x^6 + 3}{2x^6 + 3}$ $f(x^3) = \frac{2x^6 + 3}{4x^2 + 4x + 1}$ $f(x^3) = \frac{2x^6 + 3}{2x^6 + 3}$ $f(x^3) = \frac{2x^6 + 3}{2x^6 + 3}$ $f(x^3) = \frac{2x^6 + 3}{2x^6 + 3}$ $f(x^6 - 1) = \frac{2x^6 + 3}{2x^6 + 3}$ 1. $$g[h(x^3)] = \frac{2 \times 6 + 3}{4 \times 3}$$ $h(x^3) = (x^3)^2 - 1$ $= \times 6 - 1$ $g(x^6 - 1) = 2(x^6 - 1) + 5$ $= 2 \times 6 - 2 + 5$ # INTERCEPTS OF A GRAPH To find the x-intercepts, let y = 0 in your equation and solve. To find the y-intercepts, let x = 0 in your equation and solve. **Example:** Given the function $y = x^2 - 2x - 3$, find all intercepts. $$x - \text{int.} (Let \ y = 0)$$ $$0=x^2-2x-3$$ $$0 = (x-3)(x+1)$$ $$x = -1 \text{ or } x = 3$$ $$x-i$$ ntercepts $(-1,0)$ and $(3,0)$ $$y - \text{int.} (Let \ x = 0)$$ $$y = 0^2 - 2(0) - 3$$ $$v = -3$$ $$y$$ – intercept $(0, -3)$ ### Find the x and y intercepts for each. 12. $$y = 2x - 5$$ 13. $$y = x^2 + x - 2$$ $$\frac{x}{0} = \frac{y}{2} = \frac{y - int}{2}$$ $0 = \frac{x}{2} = \frac{y - int}{2}$ 14. $$y = x\sqrt{16-x^2}$$ $$x \mid y$$ $$0 \mid 0 \leftarrow x \text{ and } y \text{ intercept}$$ $$+4 \mid 0 \mid 0 = x \cdot 16 - x^{2}$$ $$x - \text{intercept} \quad 0 = x^{2} \left(16 - x^{2}\right)$$ $$x^{2} = 0 \quad 16 - x^{2}$$ $$x = 0 \quad 16 = x^{2}$$ 15. $$v^2 = x^3 - 4x$$ 15. $$y^2 = x^3 - 4x$$ $$x \mid y = x\sqrt{16-x^2}$$ $$0 \mid 0 \mid x \mid \text{ and } y \text{ intercept}$$ $$+ 4 \mid 0 \quad 0 = x\sqrt{16-x^2}$$ $$2 - \text{intercept}$$ $$0 = x^2(16-x^2)$$ $$x^2 = 0 \quad 16-x^2 = 0$$ # POINTS OF INTERSECTION Use substitution or elimination method to solve the system of equations. Remember: You are finding a POINT OF INTERSECTION so your answer is an ordered pair. ### CALCULATOR TIP Remember you can use your calculator to verify your answers below. Graph the two lines then go to CALC (2nd Trace) and hit INTERSECT. Example: Find all points of intersection of $x^2 - y = 3$ ### **ELIMINATION METHOD** Subtract to eliminate v $$x^2 - x = 2$$ $$x^2 - x - 2 = 0$$ $$(x-2)(x+1)=0$$ $$x = 2$$ or $x = -1$ Plug in x = 2 and x = -1 to find y Points of Intersection: (2,1) and (-1,-2) ### SUBSTITUTION METHOD Solve one equation for one variable. $$y = x^2 - 3$$ $$y = x - 1$$ Therefore by substitution $x^2 - 3 = x - 1$ $$x^2 - x - 2 = 0$$ From here it is the same as the other example ### Find the point(s) of intersection of the graphs for the given equations. 7. $$x^{2}+y=6$$ $$x+y=4$$ $$y=4-x$$ $$y=4-x$$ $$x=3-(x-1)^{2}$$ $$x = 3 - y^{2}$$ $$y = \underline{x-1}$$ $$x = 3 - (x-1)^{2}$$ $$x = 3 - (x^{2} - 2x + 1)$$ $$x = 3 - x^{2} + 2x - 1$$ $$0 = -x^{2} + x + 2$$ $$0 = x^{2} - x - 2$$ $$(x-2)(x+1)$$ $$x = 2 - 1$$ $$(2)(1)(-1,-2)$$ # DOMAIN AND RANGE Domain – All x values for which a function is defined (input values) Range – Possible y or Output values You can use a graphing calculator to help you. ### **EXAMPLE 1** a) Find Domain & Range of 9(x). The domain is the set of inputs 600 of the function Input valves run along the horizontal axis. The furthest left input valve associated with a pt. on the graph is -3. The furthest right input values associated with apt. on the graph is 3. So Domain is [-3,3], that is all reals from - 3 to 3. The range represents the set of output values for the function. Output values run along the vertical axis. The lunest output valve of the function is - 2. The highest is 1. So the range is [-2,17, all reals From - 2 to] ### **EXAMPLE 2** Find the domain and range of $f(x) = \sqrt{4-x^2}$ Write answers in interval notation. ### **DOMAIN** For f(x) to be defined $4-x^2 \ge 0$. This is true when $-2 \le x \le 2$ Domain: $\begin{bmatrix} -2,2 \end{bmatrix}$ ### **RANGE** The solution to a square root must always be positive thus f(x) must be greater than or equal to 0. Range: $[0,\infty)$ Find the domain and range of each function. Write your answer in INTERVAL notation. 19. $$f(x) = x^2 - 5$$ $$(-\infty,\infty)$$ 21. $$f(x) = 3\sin x$$ $$D: (-\infty, \infty)$$ 20. $$f(x) = -\sqrt{x+3}$$ 22. $$f(x) = \frac{2}{x-1}$$ $$D: (-\infty, 1) (1, \infty)$$ $$R:(-\infty,0)$$ $(0,\infty)$ ## INVERSES To find the inverse of a function, simply switch the x and the y and solve for the new "y" value. Recall $f^{-1}(x)$ is defined as the inverse of f(x) ### Example 1: $$f(x) = \sqrt[3]{x+1}$$ Rewrite f(x) as y $$y = \sqrt[3]{x+1}$$ Switch x and y $$x = \sqrt[3]{y+1}$$ Solve for your new y $$\left(x\right)^3 = \left(\sqrt[3]{y+1}\right)^3$$ Cube both sides $$x^3 = y + 1$$ Simplify $$y = x^3 - 1$$ Solve for y $$f^{-1}(x) = x^3 - 1$$ $f^{-1}(x) = x^3 - 1$ Rewrite in inverse notation Find the inverse for each function. **23.** $$f(x) = 2x + 1$$ $$x = 2y + 1$$ $$x - 1 = 2y$$ $$f^{-1}(x) = \frac{x - 1}{2}$$ 25. $$g(x) = \frac{5}{x-2}$$ $$x = \frac{5}{y-2}$$ $y-2 = \frac{5}{x}$ $y = \frac{5}{x} + 2$ **24.** $$f(x) = \frac{x^2}{3}$$ 24. $$f(x) = \frac{x^2}{3}$$ $$3x = y^{2}$$ $$\pm \sqrt{3}x = y$$ $$(-1/x) = \pm \sqrt{3}x$$ $$x = \frac{5}{y-\lambda}$$ $$y = \frac{5}{x}$$ $$y = \frac{5}{x}$$ $$y = \frac{5}{x}$$ $$(x-1)^{2} = \frac{4}{y}$$ If the graph of $f(x)$ has the point (2. 7) then what is one point that will be on the graph of $f^{-1}(x)$? 27. If the graph of f(x) has the point (2, 7) then what is one point that will be on the graph of $f^{-1}(x)$? (7,2) **28.** Explain how the graphs of f(x) and $f^{-1}(x)$ compare. The graphs are symmetrical over the y=x line. # **EQUATION OF A LINE** **Slope intercept form:** y = mx + b **Vertical line:** x = c (slope is undefined) **Point-slope form:** $y-y_1 = m(x-x_1)$ **Horizontal line:** y = c (slope is 0) * LEARN! We will use this formula frequently! **Example:** Write a linear equation that has a slope of ½ and passes through the point (2, -6) Slope intercept form $$y = \frac{1}{2}x + b$$ Plug in $\frac{1}{2}$ for m $$y+6=\frac{1}{2}(x-2)$$ $y+6=\frac{1}{2}(x-2)$ Plug in all variables $$-6 = \frac{1}{2}(2) + b$$ $-6 = \frac{1}{2}(2) + b$ Plug in the given ordered b = -7 Solve for b $y = \frac{1}{2}x - 7$ $$y = \frac{1}{2}x - 7$$ Solve for y $$b = -7$$ $$y = \frac{1}{2}x - 7$$ 29. Determine the equation of a line passing through the point (5, -3) with an undefined slope. 30. Determine the equation of a line passing through the point (-4, 2) with a slope of 0. 31. Use point-slope form to find the equation of the line passing through the point (0, 5) with a slope of 2/3. 32. Use point-slope form to find a line passing through the point (2, 8) and parallel to the line $y = \frac{5}{6}x - 1$. $$y-8=\frac{5}{6}(x-2)$$ 33. Use point-slope form to find a line perpendicular to y = -2x + 9 passing through the point (4, 7). 34. Find the equation of a line passing through the points (-3, 6) and (1, 2). $$m = \frac{6-2}{-3-1} = \frac{4}{-4} = -1$$ then use either point. $[y-6=-(x+3)]$ 35. Find the equation of a line with an x-intercept (2, 0) and a y-intercept (0, 3) $$M = \frac{0-3}{2-0} = \frac{-3}{2}$$ 9 $\left[\frac{4}{3} = \frac{-3}{3} \times + 3 \right]$ ## UNIT CIRCLE You can determine the sine or the cosine of any standard angle on the unit circle. The x-coordinate of the circle is the cosine and the y-coordinate is the sine of the angle. Recall tangent is defined as sin/cos or the slope of the line. ### **Examples:** $$\sin\frac{\pi}{2} = 1$$ $$\cos\frac{\pi}{2} = 0$$ $$\sin\frac{\pi}{2} = 1 \qquad \cos\frac{\pi}{2} = 0 \qquad \tan\frac{\pi}{2} = und$$ *You must have these memorized OR know how to calculate their values without the use of a calculator. a.) $$\sin \pi = \bigcirc$$ b.) $$\cos \frac{3\pi}{2} = \bigcirc$$ c.) $$\sin\left(-\frac{\pi}{2}\right) = -1$$ d.) $\sin\left(\frac{5\pi}{4}\right) = -\frac{1}{2}$ d.) $$\sin\left(\frac{5\pi}{4}\right) = \frac{1}{2}$$ e.) $$\cos \frac{\pi}{4} = \sqrt{2}$$ f.) $\cos(-\pi) = -1$ g) $\cos \frac{\pi}{3} = \frac{1}{2}$ $$f.) \cos(-\pi) = -$$ $$g)\cos\frac{\pi}{3} = \frac{1}{2}$$ h) $$\sin \frac{5\pi}{6} = \frac{1}{2}$$ i) $$\cos \frac{2\pi}{3} = -\frac{1}{2}$$ j) $$\tan \frac{\pi}{4} = 1$$ k) $$\tan \pi = \bigcirc$$ 1) $$\tan \frac{\pi}{3} = \sqrt{3}$$ m) $$\cos \frac{4\pi}{3} = \frac{1}{2}$$ m) $$\cos \frac{4\pi}{3} = \frac{1}{2}$$ n) $\sin \frac{11\pi}{6} = -\frac{1}{2}$ o) $\tan \frac{7\pi}{4} = -\frac{1}{2}$ o) $$\tan \frac{7\pi}{4} = -1$$ p) $$\sin\left(-\frac{\pi}{6}\right) = \frac{1}{2}$$ # TRIGONOMETRIC EQUATIONS Solve each of the equations for $0 \le x < 2\pi$. 37. $$\sin x = -\frac{1}{2}$$ $$\chi = \frac{7\pi}{6}, \quad || \pi$$ 39. $$4\sin^2 x = 3$$ **Recall $\sin^2 x = (\sin x)^2$ **Recall if $x^2 = 25$ then $x = \pm 5$ $\sin^2 x = \frac{3}{4}$ $x = \pm \frac{3}{3}$ $x = \pm \frac{3}{3}$ $x = \pm \frac{3}{3}$ $x = \pm \frac{3}{3}$ 38. $$2\cos x = \sqrt{3}$$ $$\cos x = \sqrt{3}$$ $$\chi = \frac{75}{6}, \frac{11\pi}{6}$$ $$\frac{\partial \cos^2 x - \cos x - 1 = 0}{(\partial \cos x + 1)(\cos x - 1)}$$ $$\frac{\cos x = -\frac{1}{2} \text{ or } \cos x = 1}{(\cos x - 1)^{\frac{2\pi}{3}}, \frac{4\pi}{3}}$$ 40. $2\cos^2 x - 1 - \cos x = 0$ *Factor # TRANSFORMATION OF FUNCTIONS Feel free to use desmos to help you with these problems. $$h(x) = f(x) + c$$ Vertical shift c units up $$h(x) = f(x - c)$$ Horizontal shift c units right $$h(x) = f(x) - c$$ Vertical shift c units down $$h(x) = f(x+c)$$ $$h(x) = -f(x)$$ Reflection over the x-axis $$h(x) = f(x+c)$$ Horizontal shift c units left 41. Given $f(x) = x^2$ and $g(x) = (x-3)^2 + 1$. How the does the graph of g(x) differ from f(x)? The graph of f(x) will shift right 3 onits and up one unit. 42. Write an equation for the function that has the shape of $f(x) = x^3$ but moved six units to the left and reflected over the x-axis. $$h(x) = -f(x+6)$$ $h(x) = -(x+6)^3$ 43. If the ordered pair (2, 4) is on the graph of f(x), find one ordered pair that will be on the following functions: a) $$f(x)-3$$ b) $$f(x-3)$$ $$(5,4)$$ c) $$2f(x)$$ 11 $(2,8)$ d) $$f(x-2)+1$$ $$(2,-4)$$ # **VERTICAL ASYMPTOTES** Determine the vertical asymptotes for the function. Set the denominator equal to zero to find the x-value for which the function is undefined. That will be the vertical asymptote given the numerator does not equal 0 also (Remember this is called removable discontinuity). Write a vertical asymptotes as a line in the form x = Example: Find the vertical asymptote of $y = \frac{1}{x-2}$ Since when x = 2 the function is in the form 1/0 then the vertical line x = 2 is a vertical asymptote of the function. 44. $$f(x) = \frac{1}{x^2}$$ 45. $$f(x) = \frac{x^2}{x^2 - 4}$$ $$x = \pm 2$$ 46. $$f(x) = \frac{2+x}{x^2(1-x)}$$ $$x=0,1$$ 47. $$f(x) = \frac{4-x}{x^2-16}$$ 48. $$f(x) = \frac{x-1}{x^2 + x - 2}$$ $$(x+2)(x-1)$$ $$x=-2$$ $x=1$ 49. $$f(x) = \frac{5x+20}{x^2-16}$$ # **HORIZONTAL ASYMPTOTES** Determine the horizontal asymptotes using the three cases below. Case I. Degree of the numerator is less than the degree of the denominator. The asymptote is y = 0. Example: $y = \frac{1}{r-1}$ (As x becomes very large or very negative the value of this function will approach 0). Thus there is a horizontal asymptote at v = 0. Case II. Degree of the numerator is the same as the degree of the denominator. The asymptote is the ratio of the lead coefficients. Exmaple: $y = \frac{2x^2 + x - 1}{3x^2 + 4}$ (As x becomes very large or very negative the value of this function will approach 2/3). Thus there is a horizontal asymptote at $y = \frac{2}{3}$. Case III. Degree of the numerator is greater than the degree of the denominator. There is no horizontal asymptote. The function increases without bound. (If the degree of the numerator is exactly 1 more than the degree of the denominator, then there exists a slant asymptote, which is determined by long division.) Example: $y = \frac{2x^2 + x - 1}{3x - 3}$ (As x becomes very large the value of the function will continue to increase and as x becomes very negative the value of the function will also become more negative). **Determine all Horizontal Asymptotes.** 50. $$f(x) = \frac{x^2 - 2x + 1}{x^3 + x - 7}$$ 51. $$f(x) = \frac{5x^3 - 2x^2 + 8}{4x - 3x^3 + 5}$$ $$y = -\frac{5}{3}$$ 52. $$f(x) = \frac{4x^2}{3x^2 - 7}$$ $$y = \frac{4}{3}$$ 53. $$f(x) = \frac{(2x-5)^2}{x^2-x}$$ 54. $$f(x) = \frac{-3x+1}{\sqrt{x^2+x}}$$ * Remember $\sqrt{x^2} = \pm x$ * Remember $$\sqrt{x^2} = \pm x$$ $$f(x) = \frac{-3x}{\pm x}$$ ^{*}This is very important in the use of limits.* ## **EXPONENTIAL FUNCTIONS** ### Example: Solve for x $$4^{x+1} = \left(\frac{1}{2}\right)^{3x-2}$$ $$(2^2)^{x+1} = (2^{-1})^{3x-2}$$ Get a common base $$2^{2x+2} = 2^{-3x+2}$$ Simplify $$2x+2=-3x+2$$ Set exponents equal $$x = 0$$ Solve for x ### Solve for x: 55. $$3^{3x+5} = 9^{2x+1}$$ $$3^{3x+5} = (3^{2})^{(2x+1)}$$ $$3x+5 = \lambda(2x+1)$$ $$3x+5 = 4x+\lambda$$ $$3 = x$$ $$56. \left(\frac{1}{9}\right)^x = 27^{2x+4}$$ $$(3)^{2} = (3)^{2} \times 14$$ $$-2x = 3(2x+4)$$ $$-2x = 6x+12$$ $$-8x = 12$$ $$\sqrt{x} = \sqrt{x}$$ 57. $$\left(\frac{1}{6}\right)^x = 216$$ $$\left(6\right)^{x}=6$$ $$\chi = -3$$ The statement $y = b^x$ can be written as $x = \log_b y$. They mean the same thing. ### REMEMBER: A LOGARITHM IS AN EXPONENT Recall $\ln x = \log_e x$ The value of e is 2.718281828... or $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$ Example: Evaluate the following logarithms $$\log_2 8 = ?$$ In exponential for this is $2^? = 8$ Therefore ? = 3 Thus $\log_2 8 = 3$ ## **Evaluate the following logarithms** 58. $$\log_7 7 = 1$$ 59. $$\log_3 27 = 3$$ 60. $$\log_2 \frac{1}{32} = -\zeta_0$$ 61. $$\log_{25} 5 = \frac{1}{2}$$ 63. $$\log_4 8 = \frac{3}{2}$$ $4^{\times} = 8$ $2^{2\times} = 2^{3}$ 64. $$\ln \sqrt{e} = \frac{1}{2}$$ 65. $$\ln \frac{1}{e} = -1$$ # **PROPERTIES OF LOGARITHMS** $$\log_b xy = \log_b x + \log_b y$$ $$\log_b \frac{x}{y} = \log_b x - \log_b y \qquad \qquad \log_b x^y = y \log_b x$$ $$\log_b x^y = y \log_b x$$ $$b^{\log_b x} = x$$ Examples: Expand $\log_4 16x$ Condense $\ln y - 2 \ln R$ Expand $\log_2 7x^5$ $\log_4 16 + \log_4 x$ $\ln \nu - \ln R^2$ $\log_2 7 + \log_2 x^5$ $$2 + \log_4 x$$ $$\ln \frac{y}{R^2}$$ $$\log_2 7 + 5\log_2 x$$ Use the properties of logarithms to evaluate the following 66. $$\log_2 2^5 = \boxed{3}$$ 67. $$\ln e^3 = 3$$ 68. $$\log_2 8^3 = 6$$ 69. $$\log_3 \sqrt[3]{9}$$ $\log_3 (3^2)^{\frac{1}{5}}$ $\log_3 3^{\frac{3}{5}} = 2$ 70. $$2^{\log_2 10} = \chi$$ $\log_2 2^{\log_3 10} = \log_3 \chi$ $\log_2 10 = \log_3 \chi$ 71. $$e^{\ln 8} = 8$$ 72. $$9 \ln e^2 = 18$$ 73. $$\log_9 9^3 = 3$$ 74. $$\log_{10} 25 + \log_{10} 4$$ 75. $$\log_2 40 - \log_2 5$$ 76. $$\log_2(\sqrt{2})^5 = \frac{5}{2}$$