Problem Set 6b: Acid and Base Calculations

- 1. Calculate the pH of the solutions, given the following [H⁺], and then identify the solution as acidic, basic, or neutral.
 - a) $[H^+] = 1.2 \times 10^{-2} M$
 - b) $[H^*] = 5.8 \times 10^{-9} M$
 - c) $[H^*] = 3.92 \times 10^{-12} M$
 - d) $[H^*] = 4.52 \times 10^{-5} M$
- 2. Draw the pH scale shown below. Place answers 1a-1d on the scale in their respective spots.

-														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

- 3. Calculate the [H⁺] in the following solutions, given their pH, and identify the solution as acidic, basic or neutral.
 - a) pH = 2.5
 - b) pH = 11.7
 - c) pH = 6.8
 - d) pH = 3.31
- 4. Compare the pH values for each of the solutions listed in the table below.

Solution	рН				
1	2.5				
2	1.5				
3	4.6				
4	9.4				
5	7.1				

- a) Which solution is the most acidic?
- b) Which solution dissociates to produce the highest concentration of H⁺ ions?
- c) Which solution is more acidic, solution 2 or 3? How much more acidic is that solution?
- d) Which of the solutions would be bitter to the taste and feel slippery?
- e) Which solution(s) would react with zinc?
- f) What evidence would you look for to determine whether any of the solutions had reacted with zinc?