NAME: \qquad Period: \qquad

Ch 12 Test
Stoichiometry
Carmel High/Dooner

Show all work on separate sheets and box your answers. Place final answer on the line provided with correct sig figs.

1. \qquad Rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ is produced when iron (Fe) reacts with oxygen $\left(\mathrm{O}_{2}\right)$ $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

How many grams of $\mathrm{Fe}_{2} \mathrm{O} 3$ are produced when 12.0 g of iron rusts?
2. \qquad Hydrogen gas can be made by reacting methane $\left(\mathrm{CH}_{4}\right)$ with high temperature steam:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

How many hydrogen molecules are produced when 158 g of methane reacts with steam?
3. \qquad Ammonia $\left(\mathrm{NH}_{3}\right)$ reacts with oxygen $\left(\mathrm{O}_{2}\right)$ to produce nitrogen monoxide (NO) and water:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

How many liters of NO are produced when 1.40 L of oxygen reacts with ammonia?
4. \qquad Phosphoric acid reacts with sodium hydroxide according to the equation:

$$
\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

If $1.75 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$ is made to react with 5.00 mol NaOH , identify the limiting reagent.
5. \qquad If 75.0 g of siderite ore $\left(\mathrm{FeCO}_{3}\right)$ is heated with an excess of oxygen, 45.0 g of ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ is produced:
$4 \mathrm{FeCO}_{3}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+4 \mathrm{CO}_{2}(\mathrm{~g})$
What is the percent yield of this reaction?
6. \qquad Nitrogen monoxide and oxygen gas combine to form the brown gas nitrogen dioxide, which contributes to photochemical smog. How many liters of nitrogen dioxide are produced when 34L of oxygen reacts with an excess of nitrogen monoxide. Assume conditions of STP:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

7. \qquad How many molecules of oxygen are produced when 29.2 g of water is decomposed by electrolysis according to this balanced equation:

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

8. \qquad What is the percent yield if 13.1 g CaO is actually produced when
$24.8 \mathrm{~g} \mathrm{CaCO}_{3}$ is heated?

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

9. \qquad Phosphorus trifluoride is formed from its elements:
$\mathrm{P}_{4}(\mathrm{~s})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{PF}_{3}(\mathrm{~g})$
How many grams of fluorine are needed to react with 6.20 g of phosphorus?
10. \qquad Nitric acid is formed by the reaction of nitrogen dioxide with water:
$3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{HNO}_{3}(\mathrm{aq})$
How many moles of water are needed to react with 8.4 mol of NO_{2} ?
11. \qquad Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is used as rocket fuel. It reacts with oxygen to
form nitrogen and water:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

How many liters of N_{2} (at STP) form when $1.0 \mathrm{~kg} \mathrm{~N}_{2} \mathrm{H}_{4}$ reacts with $1.0 \mathrm{~kg} \mathrm{O}_{2}$?
12. \qquad In the reaction above, what is the excess reagent and how many grams of it remain after the reaction?

