Find the amplitude, frequency and period of each function in <u>degrees</u>. Then graph the function.

Solve for $0 \le \theta < 360^\circ$. Give answers to the nearest tenth of a degree. Hint: Draw graphs to help find the angles.

6.
$$2 \tan \theta + 1 = 0$$

7.
$$5 \csc \theta + 6 = 0$$

Solve for $0 \le x < 2\pi$. Give answer to the nearest hundredth of a radian. *Hint: Draw graphs to help find the angles*.

8.
$$\cos x = -0.8$$

9.
$$3\sin x + 4 = 2$$

10.
$$4\sin x + 3 = -1$$

11.
$$\cos x + 5 = 5$$

12.

13.

14. A radio transmitter sends a radio wave from the top of a 50-foot tower. The wave is represented by the accompanying graph.

What is the equation of this radio wave?

(1)
$$y = \sin x$$

(3)
$$y = \sin 1.5x$$

(2)
$$y = 1.5 \sin x$$

$$(4) y = 2 \sin x$$

15. Which equation is represented by the accompanying graph?

(1)
$$y = \cos x$$

$$(3) \ y = \cos 2x$$

$$(2) \ y = \cos\frac{1}{2}x$$

$$(4) \ \ y = \frac{1}{2}\cos x$$

Find the amplitude, frequency and period of each function in <u>radians</u>. Then graph the function. There is no graph provided because it is probably easier to draw your own

16.
$$y = 2\sin 3x$$
 17. $y = -3\cos\left(\frac{x}{2}\right)$